Patents by Inventor Daniel Pugh

Daniel Pugh has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230325334
    Abstract: A tile of an FPGA provides memory, arithmetic functions, or both. Connections directly between multiple instances of the tile are available, allowing multiple tiles to be treated as larger memories or arithmetic circuits. By using these connections, referred to as cascade inputs and outputs, the input and output bandwidth of the arithmetic and memory circuits are increased, operand sizes are increased, or both. By using the cascade connections, multiple tiles can be used together as a single, larger tile. Thus, implementations that need memories of different sizes, arithmetic functions operating on different sized operands, or both, can use the same FPGA without additional programming or waste. Using cascade communications, more tiles are used when a large memory is needed and fewer tiles are used when a small memory is needed and the waste is avoided.
    Type: Application
    Filed: June 13, 2023
    Publication date: October 12, 2023
    Inventors: Daniel Pugh, Raymond Nijssen, Michael Philip Fitton, Marcel Van der Goot
  • Patent number: 11734216
    Abstract: A tile of an FPGA provides memory, arithmetic functions, or both. Connections directly between multiple instances of the tile are available, allowing multiple tiles to be treated as larger memories or arithmetic circuits. By using these connections, referred to as cascade inputs and outputs, the input and output bandwidth of the arithmetic and memory circuits are increased, operand sizes are increased, or both. By using the cascade connections, multiple tiles can be used together as a single, larger tile. Thus, implementations that need memories of different sizes, arithmetic functions operating on different sized operands, or both, can use the same FPGA without additional programming or waste. Using cascade communications, more tiles are used when a large memory is needed and fewer tiles are used when a small memory is needed and the waste is avoided.
    Type: Grant
    Filed: February 18, 2022
    Date of Patent: August 22, 2023
    Assignee: Achronix Semiconductor Corporation
    Inventors: Daniel Pugh, Raymond Nijssen, Michael Philip Fitton, Marcel Van der Goot
  • Publication number: 20230244446
    Abstract: A tile of an FPGA includes a multiple mode arithmetic circuit. The multiple mode arithmetic circuit is configured by control signals to operate in an integer mode, a floating-point mode, or both. In some example embodiments, multiple integer modes (e.g., unsigned, two's complement, and sign-magnitude) are selectable, multiple floating-point modes (e.g., 16-bit mantissa and 8-bit sign, 8-bit mantissa and 6-bit sign, and 6-bit mantissa and 6-bit sign) are supported, or any suitable combination thereof. The tile may also fuse a memory circuit with the arithmetic circuits. Connections directly between multiple instances of the tile are also available, allowing multiple tiles to be treated as larger memories or arithmetic circuits. By using these connections, referred to as cascade inputs and outputs, the input and output bandwidth of the arithmetic circuit is further increased.
    Type: Application
    Filed: March 23, 2023
    Publication date: August 3, 2023
    Inventors: Daniel Pugh, Raymond Nijssen, Michael Philip Fitton, Marcel Van der Goot
  • Patent number: 11650792
    Abstract: A tile of an FPGA includes a multiple mode arithmetic circuit. The multiple mode arithmetic circuit is configured by control signals to operate in an integer mode, a floating-point mode, or both. In some example embodiments, multiple integer modes (e.g., unsigned, two's complement, and sign-magnitude) are selectable, multiple floating-point modes (e.g., 16-bit mantissa and 8-bit sign, 8-bit mantissa and 6-bit sign, and 6-bit mantissa and 6-bit sign) are supported, or any suitable combination thereof. The tile may also fuse a memory circuit with the arithmetic circuits. Connections directly between multiple instances of the tile are also available, allowing multiple tiles to be treated as larger memories or arithmetic circuits. By using these connections, referred to as cascade inputs and outputs, the input and output bandwidth of the arithmetic circuit is further increased.
    Type: Grant
    Filed: January 6, 2022
    Date of Patent: May 16, 2023
    Assignee: Achronix Semiconductor Corporation
    Inventors: Daniel Pugh, Raymond Nijssen, Michael Philip Fitton, Marcel Van der Goot
  • Publication number: 20220214990
    Abstract: A tile of an FPGA provides memory, arithmetic functions, or both. Connections directly between multiple instances of the tile are available, allowing multiple tiles to be treated as larger memories or arithmetic circuits. By using these connections, referred to as cascade inputs and outputs, the input and output bandwidth of the arithmetic and memory circuits are increased, operand sizes are increased, or both. By using the cascade connections, multiple tiles can be used together as a single, larger tile. Thus, implementations that need memories of different sizes, arithmetic functions operating on different sized operands, or both, can use the same FPGA without additional programming or waste. Using cascade communications, more tiles are used when a large memory is needed and fewer tiles are used when a small memory is needed and the waste is avoided.
    Type: Application
    Filed: February 18, 2022
    Publication date: July 7, 2022
    Inventors: Daniel Pugh, Raymond Nijssen, Michael Philip Fitton, Marcel Van der Goot
  • Publication number: 20220129244
    Abstract: A tile of an FPGA includes a multiple mode arithmetic circuit. The multiple mode arithmetic circuit is configured by control signals to operate in an integer mode, a floating-point mode, or both. In some example embodiments, multiple integer modes (e.g., unsigned, two's complement, and sign-magnitude) are selectable, multiple floating-point modes (e.g., 16-bit mantissa and 8-bit sign, 8-bit mantissa and 6-bit sign, and 6-bit mantissa and 6-bit sign) are supported, or any suitable combination thereof. The tile may also fuse a memory circuit with the arithmetic circuits. Connections directly between multiple instances of the tile are also available, allowing multiple tiles to be treated as larger memories or arithmetic circuits. By using these connections, referred to as cascade inputs and outputs, the input and output bandwidth of the arithmetic circuit is further increased.
    Type: Application
    Filed: January 6, 2022
    Publication date: April 28, 2022
    Inventors: Daniel Pugh, Raymond Nijssen, Michael Philip Fitton, Marcel Van der Goot
  • Patent number: 11288220
    Abstract: A tile of an FPGA provides memory, arithmetic functions, or both. Connections directly between multiple instances of the tile are available, allowing multiple tiles to be treated as larger memories or arithmetic circuits. By using these connections, referred to as cascade inputs and outputs, the input and output bandwidth of the arithmetic and memory circuits are increased, operand sizes are increased, or both. By using the cascade connections, multiple tiles can be used together as a single, larger tile. Thus, implementations that need memories of different sizes, arithmetic functions operating on different sized operands, or both, can use the same FPGA without additional programming or waste. Using cascade communications, more tiles are used when a large memory is needed and fewer tiles are used when a small memory is needed and the waste is avoided.
    Type: Grant
    Filed: October 18, 2019
    Date of Patent: March 29, 2022
    Assignee: Achronix Semiconductor Corporation
    Inventors: Daniel Pugh, Raymond Nijssen, Michael Philip Fitton, Marcel Van der Goot
  • Patent number: 11256476
    Abstract: A tile of an FPGA includes a multiple mode arithmetic circuit. The multiple mode arithmetic circuit is configured by control signals to operate in an integer mode, a floating-point mode, or both. In some example embodiments, multiple integer modes (e.g., unsigned, two's complement, and sign-magnitude) are selectable, multiple floating-point modes (e.g., 16-bit mantissa and 8-bit sign, 8-bit mantissa and 6-bit sign, and 6-bit mantissa and 6-bit sign) are supported, or any suitable combination thereof. The tile may also fuse a memory circuit with the arithmetic circuits. Connections directly between multiple instances of the tile are also available, allowing multiple tiles to be treated as larger memories or arithmetic circuits. By using these connections, referred to as cascade inputs and outputs, the input and output bandwidth of the arithmetic circuit is further increased.
    Type: Grant
    Filed: August 8, 2019
    Date of Patent: February 22, 2022
    Assignee: Achronix Semiconductor Corporation
    Inventors: Daniel Pugh, Raymond Nijssen, Michael Philip Fitton, Marcel Van der Goot
  • Publication number: 20210117356
    Abstract: A tile of an FPGA provides memory, arithmetic functions, or both. Connections directly between multiple instances of the tile are available, allowing multiple tiles to be treated as larger memories or arithmetic circuits. By using these connections, referred to as cascade inputs and outputs, the input and output bandwidth of the arithmetic and memory circuits are increased, operand sizes are increased, or both. By using the cascade connections, multiple tiles can be used together as a single, larger tile. Thus, implementations that need memories of different sizes, arithmetic functions operating on different sized operands, or both, can use the same FPGA without additional programming or waste. Using cascade communications, more tiles are used when a large memory is needed and fewer tiles are used when a small memory is needed and the waste is avoided.
    Type: Application
    Filed: October 18, 2019
    Publication date: April 22, 2021
    Inventors: Daniel Pugh, Raymond Nijssen, Michael Philip Fitton, Marcel Van der Goot
  • Patent number: 10963221
    Abstract: In some example embodiments a logical block comprising twelve inputs and two six-input lookup tables (LUTs) is provided, wherein four of the twelve inputs are provided as inputs to both of the six-input lookup tables. This configuration supports efficient field programmable gate array (FPGA) implementation of multipliers. Each six-input LUT comprises two five-input lookup tables (LUT5s) that are used to form Booth encoding multiplier building blocks. The five inputs to each LUT5 are two bits from a multiplier and three Booth-encoded bits from a multiplicand. By assembling building blocks, multipliers of arbitrary size may be formed.
    Type: Grant
    Filed: February 27, 2020
    Date of Patent: March 30, 2021
    Assignee: Achronix Semiconductor Corporation
    Inventors: Daniel Pugh, Raymond Nijssen
  • Publication number: 20210042087
    Abstract: A tile of an FPGA includes a multiple mode arithmetic circuit. The multiple mode arithmetic circuit is configured by control signals to operate in an integer mode, a floating-point mode, or both. In some example embodiments, multiple integer modes (e.g., unsigned, two's complement, and sign-magnitude) are selectable, multiple floating-point modes (e.g., 16-bit mantissa and 8-bit sign, 8-bit mantissa and 6-bit sign, and 6-bit mantissa and 6-bit sign) are supported, or any suitable combination thereof. The tile may also fuse a memory circuit with the arithmetic circuits. Connections directly between multiple instances of the tile are also available, allowing multiple tiles to be treated as larger memories or arithmetic circuits. By using these connections, referred to as cascade inputs and outputs, the input and output bandwidth of the arithmetic circuit is further increased.
    Type: Application
    Filed: August 8, 2019
    Publication date: February 11, 2021
    Inventors: Daniel Pugh, Raymond Nijssen, Michael Philip Fitton, Marcel Van der Goot
  • Publication number: 20200373925
    Abstract: A tile of an FPGA fuses memory and arithmetic circuits. Connections directly between multiple instances of the tile are also available, allowing multiple tiles to be treated as larger memories or arithmetic circuits. By using these connections, referred to as cascade inputs and outputs, the input and output bandwidth of the arithmetic circuit is further increased. The arithmetic unit accesses inputs from a combination of: the switch fabric, the memory circuit, a second memory circuit of the tile, and a cascade input. In some example embodiments, the routing of the connections on the tile is based on post-fabrication configuration. In one configuration, all connections are used by the memory circuit, allowing for higher bandwidth in writing or reading the memory. In another configuration, all connections are used by the arithmetic circuit.
    Type: Application
    Filed: July 28, 2020
    Publication date: November 26, 2020
    Inventors: Daniel Pugh, Raymond Nijssen, Michael Philip Fitton
  • Patent number: 10790830
    Abstract: A tile of an FPGA fuses memory and arithmetic circuits. Connections directly between multiple instances of the tile are also available, allowing multiple tiles to be treated as larger memories or arithmetic circuits. By using these connections, referred to as cascade inputs and outputs, the input and output bandwidth of the arithmetic circuit is further increased. The arithmetic unit accesses inputs from a combination of: the switch fabric, the memory circuit, a second memory circuit of the tile, and a cascade input. In some example embodiments, the routing of the connections on the tile is based on post-fabrication configuration. In one configuration, all connections are used by the memory circuit, allowing for higher bandwidth in writing or reading the memory. In another configuration, all connections are used by the arithmetic circuit.
    Type: Grant
    Filed: May 20, 2019
    Date of Patent: September 29, 2020
    Assignee: Achronix Semiconductor Corporation
    Inventors: Daniel Pugh, Raymond Nijssen, Michael Philip Fitton
  • Publication number: 20200195951
    Abstract: In some example embodiments a logical block comprising twelve inputs and two six-input lookup tables (LUTs) is provided, wherein four of the twelve inputs are provided as inputs to both of the six-input lookup tables. This configuration supports efficient field programmable gate array (FPGA) implementation of multipliers. Each six-input LUT comprises two five-input lookup tables (LUT5s) that are used to form Booth encoding multiplier building blocks. The five inputs to each LUT5 are two bits from a multiplier and three Booth-encoded bits from a multiplicand. By assembling building blocks, multipliers of arbitrary size may be formed.
    Type: Application
    Filed: February 27, 2020
    Publication date: June 18, 2020
    Inventors: Daniel Pugh, Raymond Nijssen
  • Patent number: 10656915
    Abstract: In some example embodiments a logical block comprising twelve inputs and two six-input lookup tables (LUTs) is provided, wherein four of the twelve inputs are provided as inputs to both of the six-input lookup tables. This configuration supports efficient field programmable gate array (FPGA) implementation of multipliers. Each six-input LUT comprises two five-input lookup tables (LUT5s) that are used to form Booth encoding multiplier building blocks. The five inputs to each LUT5 are two bits from a multiplier and three Booth-encoded bits from a multiplicand. By assembling building blocks, multipliers of arbitrary size may be formed.
    Type: Grant
    Filed: September 18, 2018
    Date of Patent: May 19, 2020
    Assignee: Achronix Semiconductor Corporation
    Inventors: Daniel Pugh, Raymond Nijssen
  • Publication number: 20200019375
    Abstract: In some example embodiments a logical block comprising twelve inputs and two six-input lookup tables (LUTs) is provided, wherein four of the twelve inputs are provided as inputs to both of the six-input lookup tables. This configuration supports efficient field programmable gate array (FPGA) implementation of multipliers. Each six-input LUT comprises two five-input lookup tables (LUT5s) that are used to form Booth encoding multiplier building blocks. The five inputs to each LUT5 are two bits from a multiplier and three Booth-encoded bits from a multiplicand. By assembling building blocks, multipliers of arbitrary size may be formed.
    Type: Application
    Filed: September 18, 2018
    Publication date: January 16, 2020
    Inventors: Daniel Pugh, Raymond Nijssen
  • Patent number: 9251850
    Abstract: A proxy-based, nonlinear editing system and method with improved audio level controls is provided. The system includes a proxy file generator, an audio summary file generator that assigns a single audio level for each proxy file video frame, a web user interface having a visual display, and a digital controller. Whenever a proxy file selected for display on the visual display, the digital processor simultaneously provides a graph of the associated audio summary file. The digital processor serially connects, on the same axes, the audio graphs of proxy files being assembled into an edited product, marks the location of audio “spikes”, and provides the web user interface with controls for adjusting the audio level of all or a portion of the audio graphs.
    Type: Grant
    Filed: December 19, 2012
    Date of Patent: February 2, 2016
    Assignee: BITCENTRAL INC.
    Inventor: Daniel Pugh
  • Publication number: 20140173437
    Abstract: A proxy-based, nonlinear editing system and method with improved audio level controls is provided. The system includes a proxy file generator, an audio summary file generator that assigns a single audio level for each proxy file video frame, a web user interface having a visual display, and a digital controller. The audio summary file generator preferably determines the single audio level per video frame by selecting the highest audio level within the frame that lasts long enough to be audibly perceptible. Whenever a proxy file selected for display on the visual display, the digital processor simultaneously provides a graph of the associated audio summary file. The digital processor serially connects, on the same axes, the audio graphs of proxy files being assembled into an edited product, marks the location of audio “spikes”, and provides the web user interface with controls for adjusting the audio level of all or a portion of the audio graphs.
    Type: Application
    Filed: December 19, 2012
    Publication date: June 19, 2014
    Inventor: Daniel Pugh
  • Patent number: 8640686
    Abstract: A tile rebate cutting apparatus has a guide member, which may be formed by a spirit level, forming a linear guide for a rebate cutting tool, the rebate cutting tool incorporating at least one cutting device, the rebate cutting tool being adapted to engage with said guide member to move along a predetermined line determined by the position of the guide member to enable a cut for a rebate to be made in a ceiling tile.
    Type: Grant
    Filed: October 14, 2008
    Date of Patent: February 4, 2014
    Inventors: Daniel Pugh, Darren Pugh
  • Publication number: 20100242290
    Abstract: A tile rebate cutting apparatus has a guide member, which may be formed by a spirit level, forming a linear guide for a rebate cutting tool, the rebate cutting tool incorporating at least one cutting device, the rebate cutting tool being adapted to engage with said guide member to move along a predetermined line determined by the position of the guide member to enable a cut for a rebate to be made in a ceiling tile.
    Type: Application
    Filed: October 14, 2008
    Publication date: September 30, 2010
    Inventors: Daniel Pugh, Darren Pugh