Patents by Inventor Daniel R Harvey
Daniel R Harvey has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Patent number: 9031813Abstract: Methods and apparatus (100,200) for estimating the gravity-free shape of a flexible object (140) such as a thin sheet of glass are provided. In certain embodiments, an estimate of the gravity-free shape is produced using a bed-of-nails (BON) gauge (100) and then the shape is measured at a higher spatial resolution using a second gauge (200), with the theoretical sag between the pins (110) of the BON gauge being subtracted from the shape measured by the second gauge. In other embodiments, shape measurements are performed on both sides of the object (140) and used to estimate the reliability of the gravity-free shape estimate. In further embodiments, the bed-of-nails gauge (100) uses a least squares minimization procedure in adjusting the heights of the pins (110).Type: GrantFiled: August 27, 2010Date of Patent: May 12, 2015Assignee: Corning IncorporatedInventors: John Steele Abbott, III, Daniel R Harvey, Correy Robert Ustanik
-
Patent number: 8821999Abstract: Vacuum-insulated glass (VIG) windows (10) that employ glass-bump spacers (50) and two or more glass panes (20) are disclosed. The glass-bump spacers are formed in the surface (24) of one of the glass panes (20) and consist of the glass material from the body portion (23) of the glass pane. Thus, the glass-bump spacers are integrally formed in the glass pane, as opposed to being discrete spacer elements that need to be added and fixed to the glass pane. Methods of forming VIG windows are also disclosed. The methods include forming the glass-bump spacers by irradiating a glass pane with a focused beam (112F) from a laser (110). Heating effects in the glass cause the glass to locally expand, thereby forming a glass-bump spacer. The process is repeated at different locations in the glass pane to form an array of glass-bump spacers. A second glass pane is brought into contact with the glass-bump spacers, and the edges (28F, 28B) sealed.Type: GrantFiled: November 5, 2008Date of Patent: September 2, 2014Assignee: Corning IncorporatedInventors: Richard R Grzybowski, Daniel R Harvey, Stephan Lvovich Logunov, Daniel Louis Gabriel Ricoult, Alexander Mikhailovich Streltsov
-
Patent number: 8341976Abstract: A method of cutting a glass sheet that has been thermally or chemically strengthened along a predetermined line, axis, or direction with high speed and with minimum damage on the cut edges. The strengthened glass sheet may be an aluminoborosilicate glass material having at least one alkali metal oxide modifier, and the ratio Al 2 ? O 3 ? ( mol ? ? % ) + B 2 ? O 3 ? ( mol ? ? % ) ? ? modifiers ? ? ( mol ? ? % ) > 1. At least one damage line is formed within the strengthened glass sheet. The at least one damage line is formed outside the strengthened compressive stress surface layers and within the tensile stress layer of the strengthened glass sheet. The at least one damage line may be formed by laser treatment. A crack is initiated in the strengthened glass sheet and propagated along the at least one damage line to separate the strengthened glass sheet along the predetermined line, axis, or direction into at least two pieces.Type: GrantFiled: July 28, 2010Date of Patent: January 1, 2013Assignee: Corning IncorporatedInventors: Matthew John Dejneka, Alexander Mikhailovich Streltsov, Daniel R. Harvey, Sinue Gomez, Timothy Michael Gross
-
Patent number: 8327666Abstract: A method of cutting a glass sheet that has been thermally or chemically strengthened along a predetermined line, axis, or direction with high speed and with minimum damage on the cut edges. The strengthened glass sheet may be cut into at least two pieces, one of which having a predetermined shape or dimension. At least one damage line is formed within the strengthened glass sheet. The at least one damage line is formed outside the strengthened compressive stress surface layers and within the tensile stress layer of the strengthened glass sheet. The at least one damage line may be formed by laser treatment. A crack is initiated in the strengthened glass sheet and propagated along the at least one damage line to separate the strengthened glass sheet along the predetermined line, axis, or direction into at least two pieces.Type: GrantFiled: February 19, 2009Date of Patent: December 11, 2012Assignee: Corning IncorporatedInventors: Daniel R Harvey, Alexander Mikhailovich Streltsov
-
Publication number: 20120053891Abstract: Methods and apparatus (100,200) for estimating the gravity-free shape of a flexible object (140) such as a thin sheet of glass are provided. In certain embodiments, an estimate of the gravity-free shape is produced using a bed-of-nails (BON) gauge (100) and then the shape is measured at a higher spatial resolution using a second gauge (200), with the theoretical sag between the pins (110) of the BON gauge being subtracted from the shape measured by the second gauge. In other embodiments, shape measurements are performed on both sides of the object (140) and used to estimate the reliability of the gravity-free shape estimate. In further embodiments, the bed-of-nails gauge (100) uses a least squares minimization procedure in adjusting the heights of the pins (110).Type: ApplicationFiled: August 27, 2010Publication date: March 1, 2012Inventors: John Steele Abbott, III, Daniel R. Harvey, Correy Robert Ustanik
-
Publication number: 20110100058Abstract: The disclosure teaches methods of forming at least one bump in a glass substrate having a surface and a body portion. The method includes performing a first irradiation of a portion of the glass substrate to form in the glass surface the at least one bump having bump height. The method also includes performing thermal annealing of at least a portion of the glass substrate that includes the first irradiated portion. The method then includes performing a second irradiation of the bump to increase the bump height.Type: ApplicationFiled: October 30, 2009Publication date: May 5, 2011Inventors: James Edward Dickinson, JR., Richard Robert Grzybowski, Daniel R. Harvey, Stephan Lvovich Logunov, Alexander Mikhailovich Streltsov
-
Publication number: 20100291353Abstract: A method of cutting a glass sheet that has been thermally or chemically strengthened along a predetermined line, axis, or direction with high speed and with minimum damage on the cut edges. The strengthened glass sheet may be an aluminoborosilicate glass material having at least one alkali metal oxide modifier, and the ratio Al 2 ? O 3 ? ( mol ? ? % ) + B 2 ? O 3 ? ( mol ? ? % ) ? ? modifiers ? ? ( mol ? ? % ) > 1. At least one damage line is formed within the strengthened glass sheet. The at least one damage line is formed outside the strengthened compressive stress surface layers and within the tensile stress layer of the strengthened glass sheet. The at least one damage line may be formed by laser treatment. A crack is initiated in the strengthened glass sheet and propagated along the at least one damage line to separate the strengthened glass sheet along the predetermined line, axis, or direction into at least two pieces.Type: ApplicationFiled: July 28, 2010Publication date: November 18, 2010Inventors: Matthew John Dejneka, Alexander Mikhailovich Streltsov, Daniel R. Harvey, Sinue Gomez, Timothy Michael Gross
-
Publication number: 20100206008Abstract: A method of cutting a glass sheet that has been thermally or chemically strengthened along a predetermined line, axis, or direction with high speed and with minimum damage on the cut edges. The strengthened glass sheet may be cut into at least two pieces, one of which having a predetermined shape or dimension. At least one damage line is formed within the strengthened glass sheet. The at least one damage line is formed outside the strengthened compressive stress surface layers and within the tensile stress layer of the strengthened glass sheet. The at least one damage line may be formed by laser treatment. A crack is initiated in the strengthened glass sheet and propagated along the at least one damage line to separate the strengthened glass sheet along the predetermined line, axis, or direction into at least two pieces.Type: ApplicationFiled: February 19, 2009Publication date: August 19, 2010Inventors: Daniel R. Harvey, Alexander Mikhailovich Streltsov
-
Publication number: 20100107525Abstract: Vacuum-insulated glass (VIG) windows (10) that employ glass-bump spacers (50) and two or more glass panes (20) are disclosed. The glass-bump spacers are formed in the surface (24) of one of the glass panes (20) and consist of the glass material from the body portion (23) of the glass pane. Thus, the glass-bump spacers are integrally formed in the glass pane, as opposed to being discrete spacer elements that need to be added and fixed to the glass pane. Methods of forming VIG windows are also disclosed. The methods include forming the glass-bump spacers by irradiating a glass pane with a focused beam (112F) from a laser (110). Heating effects in the glass cause the glass to locally expand, thereby forming a glass-bump spacer. The process is repeated at different locations in the glass pane to form an array of glass-bump spacers. A second glass pane is brought into contact with the glass-bump spacers, and the edges (28F, 28B) sealed.Type: ApplicationFiled: November 5, 2008Publication date: May 6, 2010Inventors: Richard R. Grzybowski, Daniel R. Harvey, Stephan Lvovich Logunov, Daniel Louis Gabriel Ricoult, Alexander Mikhailovich Streltsov