Patents by Inventor Daniel R. Schmidt

Daniel R. Schmidt has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11925177
    Abstract: A continuously variable nozzle system includes a nozzle body (5) with an inlet and an outlet. A conduit is defined between the inlet and the outlet by a series connection of components which includes a flow meter (10). The flow meter (10) has a chamber (83) with internal helical splines (82) that are configured to interact with a spray liquid passing through the chamber (83) and create a cyclone-like effect. A sphere (52) is located inside the chamber (83) for free movement along a circular path (106). A sensor is located outside of the chamber (83) and configured to detect motion of the sphere (52) and generate an output (9) signal in response to detected motion.
    Type: Grant
    Filed: April 9, 2019
    Date of Patent: March 12, 2024
    Assignee: Intelligent Agricultural Solutions LLC
    Inventors: Marshall T. Bremer, Nicholas Butts, Todd A. Meidinger, Benjamin J. Wolbaum, Daniel R. Wood, Jr., Michael D. Schmidt
  • Patent number: 10989602
    Abstract: A recessed carbon nanotube article includes a base; a substrate disposed on the base; wells disposed in the substrate and bounded by the base and a substrate wall; and a carbon nanotube element disposed in individual wells and including vertically aligned carbon nanotubes such that a longitudinal length of the vertically aligned carbon nanotubes is less than a depth of the well in which the carbon nanotube element is disposed. A recessed carbon nanotube bolometer includes a base; a substrate on the base; radiation wells in the substrate; carbon nanotubes in the wells; thermistors and heaters on the membrane arranged as an electrical substitution member. A process for making a recessed carbon nanotube bolometer includes forming a substrate on a base; forming a radiation well in the substrate; forming carbon nanotubes in the well; disposing a cover on the wells; and forming a thermistor and a heater on the base.
    Type: Grant
    Filed: June 27, 2019
    Date of Patent: April 27, 2021
    Assignee: GOVERNMENT OF THE UNITED STATES OF AMERICA, AS REPRESENTED BY THE SECRETARY OF COMMERCE
    Inventors: Christopher S. Yung, Nathan A. Tomlin, Daniel R. Schmidt
  • Publication number: 20200003622
    Abstract: A recessed carbon nanotube article includes a base; a substrate disposed on the base; wells disposed in the substrate and bounded by the base and a substrate wall; and a carbon nanotube element disposed in individual wells and including vertically aligned carbon nanotubes such that a longitudinal length of the vertically aligned carbon nanotubes is less than a depth of the well in which the carbon nanotube element is disposed. A recessed carbon nanotube bolometer includes a base; a substrate on the base; radiation wells in the substrate; carbon nanotubes in the wells; thermistors and heaters on the membrane arranged as an electrical substitution member. A process for making a recessed carbon nanotube bolometer includes forming a substrate on a base; forming a radiation well in the substrate; forming carbon nanotubes in the well; disposing a cover on the wells; and forming a thermistor and a heater on the base.
    Type: Application
    Filed: June 27, 2019
    Publication date: January 2, 2020
    Inventors: Christopher S. Yung, Nathan A. Tomlin, Daniel R. Schmidt
  • Patent number: 9285382
    Abstract: Systems and methods for processing and analyzing samples are disclosed. The system may process samples, such as biological fluids, using assay cartridges which can be processed at different processing locations. In some cases, the system can be used for PCR processing. The different processing locations may include a preparation location where samples can be prepared and an analysis location where samples can be analyzed. To assist with the preparation of samples, the system may also include a number of processing stations which may include processing lanes. During the analysis of samples, in some cases, thermal cycler modules and an appropriate optical detection system can be used to detect the presence or absence of certain nucleic acid sequences in the samples. The system can be used to accurately and rapidly process samples.
    Type: Grant
    Filed: January 23, 2013
    Date of Patent: March 15, 2016
    Assignee: Beckman Coulter, Inc.
    Inventors: Brian D. Wilson, Matthew S. Davis, Matthew D. Erickson, Alan N. Johnson, Garrick A. Maurer, Daniel R. Schmidt, Joshua D. Wiltsie
  • Patent number: 9274132
    Abstract: Systems and methods for processing and analyzing samples are disclosed. The system may process samples, such as biological fluids, using assay cartridges which can be processed at different processing locations. In some cases, the system can be used for PCR processing. The different processing locations may include a preparation location where samples can be prepared and an analysis location where samples can be analyzed. To assist with the preparation of samples, the system may also include a number of processing stations which may include processing lanes. During the analysis of samples, in some cases, thermal cycler modules and an appropriate optical detection system can be used to detect the presence or absence of certain nucleic acid sequences in the samples. The system can be used to accurately and rapidly process samples.
    Type: Grant
    Filed: January 23, 2013
    Date of Patent: March 1, 2016
    Assignee: Beckman Coulter, Inc.
    Inventors: Brian D. Wilson, David L. Anderson, Matthew S. Davis, Matthew D. Erickson, Alan N. Johnson, Garrick A. Maurer, Michael J. Rosen, Mark F. Sauerburger, Daniel R. Schmidt, Joshua D. Wiltsie
  • Publication number: 20150217291
    Abstract: Systems and methods for processing and analyzing samples are disclosed. The system may process samples, such as biological fluids, using assay cartridges which can be processed at different processing locations. In some cases, the system can be used for PCR processing. The different processing locations may include a preparation location where samples can be prepared and an analysis location where samples can be analyzed. To assist with the preparation of samples, the system may also include a number of processing stations which may include processing lanes. During the analysis of samples, in some cases, thermal cycler modules and an appropriate optical detection system can be used to detect the presence or absence of certain nucleic acid sequences in the samples. The system can be used to accurately and rapidly process samples.
    Type: Application
    Filed: January 6, 2015
    Publication date: August 6, 2015
    Inventors: Brian D. Wilson, Sami D. ALARURI, Matthew S. DAVIS, Matthew D. ERICKSON, Alan N. JOHNSON, Garrick A. MAURER, Mark F. SAUERBURGER, Daniel R. SCHMIDT, Joshua D. WILTSIE, Thomas M. STACHELEK, David L. YANG
  • Patent number: 9046455
    Abstract: Systems and methods for processing and analyzing samples are disclosed. The system may process samples, such as biological fluids, using assay cartridges which can be processed at different processing locations. In some cases, the system can be used for PCR processing. The different processing locations may include a preparation location where samples can be prepared and an analysis location where samples can be analyzed. To assist with the preparation of samples, the system may also include a number of processing stations which may include processing lanes. During the analysis of samples, in some cases, thermal cycler modules and an appropriate optical detection system can be used to detect the presence or absence of certain nucleic acid sequences in the samples. The system can be used to accurately and rapidly process samples.
    Type: Grant
    Filed: January 23, 2013
    Date of Patent: June 2, 2015
    Assignee: Beckman Coulter, Inc.
    Inventors: Brian D. Wilson, David L. Anderson, Matthew S. Davis, Matthew D. Erickson, Alan N. Johnson, Garrick A. Maurer, Michael J. Rosen, Mark F. Sauerburger, Daniel R. Schmidt, Joshua D. Wiltsie
  • Publication number: 20150111288
    Abstract: Systems and methods for processing and analyzing samples are disclosed. The system may process samples, such as biological fluids, using assay cartridges which can be processed at different processing locations. In some cases, the system can be used for PCR processing. The different processing locations may include a preparation location where samples can be prepared and an analysis location where samples can be analyzed. To assist with the preparation of samples, the system may also include a number of processing stations which may include processing lanes. During the analysis of samples, in some cases, thermal cycler modules and an appropriate optical detection system can be used to detect the presence or absence of certain nucleic acid sequences in the samples. The system can be used to accurately and rapidly process samples.
    Type: Application
    Filed: October 1, 2014
    Publication date: April 23, 2015
    Inventors: Brian D. Wilson, David L. Anderson, Matthew D. Erickson, Alan N. Johnson, Michael J. Rosen, Daniel R. Schmidt, Joshua D. Wiltsie
  • Patent number: 8962308
    Abstract: Systems and methods for processing and analyzing samples are disclosed. The system may process samples, such as biological fluids, using assay cartridges which can be processed at different processing locations. In some cases, the system can be used for PCR processing. The different processing locations may include a preparation location where samples can be prepared and an analysis location where samples can be analyzed. To assist with the preparation of samples, the system may also include a number of processing stations which may include processing lanes. During the analysis of samples, in some cases, thermal cycler modules and an appropriate optical detection system can be used to detect the presence or absence of certain nucleic acid sequences in the samples. The system can be used to accurately and rapidly process samples.
    Type: Grant
    Filed: January 23, 2013
    Date of Patent: February 24, 2015
    Assignee: Beckman Coulter, Inc.
    Inventors: Brian D. Wilson, Sami D. Alaruri, Matthew S. Davis, Matthew D. Erickson, Alan N. Johnson, Garrick A. Maurer, Mark F. Sauerburger, Daniel R. Schmidt, Joshua D. Wiltsie, Thomas M. Stachelek, David L. Yang
  • Patent number: 8956570
    Abstract: Systems and methods for processing and analyzing samples are disclosed. The system may process samples, such as biological fluids, using assay cartridges which can be processed at different processing locations. In some cases, the system can be used for PCR processing. The different processing locations may include a preparation location where samples can be prepared and an analysis location where samples can be analyzed. To assist with the preparation of samples, the system may also include a number of processing stations which may include processing lanes. During the analysis of samples, in some cases, thermal cycler modules and an appropriate optical detection system can be used to detect the presence or absence of certain nucleic acid sequences in the samples. The system can be used to accurately and rapidly process samples.
    Type: Grant
    Filed: January 23, 2013
    Date of Patent: February 17, 2015
    Assignee: Beckman Coulter, Inc.
    Inventors: Brian D. Wilson, David L. Anderson, Matthew D. Erickson, Alan N. Johnson, Michael J. Rosen, Daniel R. Schmidt, Joshua D. Wiltsie
  • Patent number: 6032303
    Abstract: A toilet bowl overflow prevention device is provided including a rigid interconnect member having a top end adapted for being pivotally connected to a knob assembly of a toilet assembly. The interconnect member is adapted for forcing a flush valve of the toilet assembly into sealed abutment with a drain aperture of the toilet assembly when the knob assembly is rotated in a direction opposite of that associated with removing the flush valve from engagement with the drain aperture.
    Type: Grant
    Filed: November 19, 1998
    Date of Patent: March 7, 2000
    Inventor: Daniel R. Schmidt
  • Patent number: 4178576
    Abstract: A feed system for a dish-type microwave antenna has a primary radiator for directing a primary radiation pattern onto the dish-type antenna. A pair of symmetrical pattern control elements are aligned with the E plane of the antenna and extend radially outwardly from opposite sides of the axis of the primary radiator between the primary radiator and the antenna for increasing the antenna gain, reducing the sidelobe levels and reducing the half power beamwidth of the antenna in both the E and H planes. In an exemplary embodiment, the pattern control elements comprise metal strips mounted on the surface of a rigid coaxial cable extending along the axis of the primary radiator for transmitting microwaves to and from the primary radiator, and the metal strips are inclined toward the antenna.
    Type: Grant
    Filed: September 1, 1977
    Date of Patent: December 11, 1979
    Assignee: Andrew Corporation
    Inventors: Daniel R. Schmidt, Jr., Joseph F. Busse