Patents by Inventor Daniel R. Shepard

Daniel R. Shepard has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10008542
    Abstract: In various embodiments, a method for forming a memory array includes forming a plurality of rows and columns of hardmask material, etching holes in the one or more layers of insulating material using the combined masking properties of the rows of hardmask material and the columns of hardmask material, and forming memory cells in the holes. The corners of the holes can be rounded.
    Type: Grant
    Filed: June 14, 2016
    Date of Patent: June 26, 2018
    Assignee: HGST, Inc.
    Inventor: Daniel R. Shepard
  • Patent number: 9997564
    Abstract: Embodiments of the present disclosure generally relate to data storage systems, and more particularly, to a SHE-MRAM device. The SHE-MRAM device includes a memory cell array having a plurality of first leads, a plurality of second leads, and a plurality of memory cells disposed between the plurality of first leads and the plurality of second leads. The second leads are made of a material having large spin orbit interactions and high electrical resistivity. The SHE-MRAM device further includes a periphery circuitry having multiple pairs of transistors. The multiple pairs of transistors reduce the length a current has to flow through a second lead of the plurality of second leads. By limiting the distance a current can flow through the second lead, applying excessive voltage to the second lead is avoided.
    Type: Grant
    Filed: October 9, 2015
    Date of Patent: June 12, 2018
    Assignee: Western Digital Technologies, Inc.
    Inventor: Daniel R. Shepard
  • Publication number: 20180069573
    Abstract: A device and method for incrementally updating the error detecting and correcting bits for an error corrected block of data in a cross point memory array is disclosed. When an error corrected block of data is modified, only the modified data bits and the incrementally updated error detecting and correcting bits are changed in the cross point memory device for improved performant and reduced impact to device endurance.
    Type: Application
    Filed: November 13, 2017
    Publication date: March 8, 2018
    Inventor: Daniel R. SHEPARD
  • Patent number: 9871043
    Abstract: A memory-array is disclosed in which an array of threshold switching devices is constructed having an area per transistor of 2F2. This array of threshold switching devices is suitable for a variety of memory or other applications including PRAM, MRAM, RRAM, FRAM, OPT-RAM and 3-D memory.
    Type: Grant
    Filed: August 31, 2015
    Date of Patent: January 16, 2018
    Assignee: HGST, Inc.
    Inventor: Daniel R. Shepard
  • Patent number: 9819365
    Abstract: A device and method for incrementally updating the error detecting and correcting bits for an error corrected block of data in a cross point memory array is disclosed. When an error corrected block of data is modified, only the modified data bits and the incrementally updated error detecting and correcting bits are changed in the cross point memory device for improved performant and reduced impact to device endurance.
    Type: Grant
    Filed: July 19, 2015
    Date of Patent: November 14, 2017
    Assignee: HGST, INC.
    Inventor: Daniel R. Shepard
  • Patent number: 9812503
    Abstract: The present invention is a method of incorporating a non-volatile memory into a CMOS process that requires four or fewer masks and limited additional processing steps. The present invention is an epi-silicon or poly-silicon process sequence that is introduced into a standard CMOS process (i) after the MOS transistors' gate oxide is formed and the gate poly-silicon is deposited (thereby protecting the delicate surface areas of the MOS transistors) and (ii) before the salicided contacts to those MOS transistors are formed (thereby performing any newly introduced steps having an elevated temperature, such as any epi-silicon or poly-silicon deposition for the formation of diodes, prior to the formation of that salicide). A 4F.sup.2 memory array is achieved with a diode matrix wherein the diodes are formed in the vertical orientation.
    Type: Grant
    Filed: August 15, 2016
    Date of Patent: November 7, 2017
    Assignee: HGST, Inc.
    Inventors: Daniel R. Shepard, Mac D. Apodaca, Thomas Michael Trent, James Juen Hsu
  • Publication number: 20170271407
    Abstract: The present invention is a means and a method for manufacturing large three dimensional memory arrays. The present invention is a means and a method for addressing the WL and BL resistance by creating arrays having not only large plane conductors for each of the memory layers (WLs) but also for the opposite polarity common layer (BL). The present invention is also a means and a method to form via interconnections between the substrate logic and the respective layers of a multidimensional array. The present invention is also a way to operate an array in which the select device is unipolar but the array is above to be operated in a bipolar way. This facilitates a bipolar operation for memory cell technologies such as Resistive RAM (e.g., RRAM, ReRAM and Mem resistors).
    Type: Application
    Filed: June 5, 2017
    Publication date: September 21, 2017
    Inventor: Daniel R. SHEPARD
  • Patent number: 9679946
    Abstract: The present invention is a means and a method for manufacturing large three dimensional memory arrays. The present invention is a means and a method for addressing the WL and BL resistance by creating arrays having not only large plane conductors for each of the memory layers (WLs) but also for the opposite polarity common layer (BL). The present invention is also a means and a method to form via interconnections between the substrate logic and the respective layers of a multidimensional array. The present invention is also a way to operate an array in which the select device is unipolar but the array is above to be operated in a bipolar way. This facilitates a bipolar operation for memory cell technologies such as Resistive RAM (e.g., RRAM, ReRAM and Memresistors).
    Type: Grant
    Filed: August 25, 2015
    Date of Patent: June 13, 2017
    Assignee: HGST, Inc.
    Inventor: Daniel R. Shepard
  • Publication number: 20170104028
    Abstract: Embodiments of the present disclosure generally relate to data storage systems, and more particularly, to a SHE-MRAM device. The SHE-MRAM device includes a memory cell array having a plurality of first leads, a plurality of second leads, and a plurality of memory cells disposed between the plurality of first leads and the plurality of second leads. The second leads are made of a material having large spin orbit interactions and high electrical resistivity. The SHE-MRAM device further includes a periphery circuitry having multiple pairs of transistors. The multiple pairs of transistors reduce the length a current has to flow through a second lead of the plurality of second leads. By limiting the distance a current can flow through the second lead, applying excessive voltage to the second lead is avoided.
    Type: Application
    Filed: October 9, 2015
    Publication date: April 13, 2017
    Inventor: Daniel R. SHEPARD
  • Publication number: 20170092576
    Abstract: Embodiments of the present disclosure generally relate to memory devices having nano-imprinted patterns interconnected to conventionally processed circuitry and a method of fabrication thereof. The memory device includes a plurality of conductive traces, a substrate having a plurality of conductive pads and a plurality of conductive posts. Each conductive pad is sized to account for alignment error inherent in the nano-imprinting process. Each conductive post is coupled between a conductive trace and a conductive pad allowing interconnection of the very finely sized features of nano-imprint lithography to the larger features of a conventionally patterned wafer.
    Type: Application
    Filed: September 29, 2015
    Publication date: March 30, 2017
    Inventor: Daniel R. SHEPARD
  • Publication number: 20170062432
    Abstract: A memory-array is disclosed in which an array of threshold switching devices is constructed having an area per transistor of 2F2. This array of threshold switching devices is suitable for a variety of memory or other applications including PRAM, MRAM, RRAM, FRAM, OPT-RAM and 3-D memory.
    Type: Application
    Filed: August 31, 2015
    Publication date: March 2, 2017
    Inventor: Daniel R. SHEPARD
  • Publication number: 20160372659
    Abstract: In various embodiments, a memory storage element for storing two or more bits of information is formed by connecting two resistive change elements in series whereby the first resistive change element is made of a first material and the second resistive change element is made of a second material and the melting point of the first resistive change element material is greater than the melting point of the second resistive change element material such that the set and reset states of the two elements can be written and read.
    Type: Application
    Filed: August 30, 2016
    Publication date: December 22, 2016
    Inventors: Mac D. APODACA, Daniel R. SHEPARD
  • Publication number: 20160351627
    Abstract: The present invention is a method of incorporating a non-volatile memory into a CMOS process that requires four or fewer masks and limited additional processing steps. The present invention is an epi-silicon or poly-silicon process sequence that is introduced into a standard CMOS process (i) after the MOS transistors' gate oxide is formed and the gate poly-silicon is deposited (thereby protecting the delicate surface areas of the MOS transistors) and (ii) before the salicided contacts to those MOS transistors are formed (thereby performing any newly introduced steps having an elevated temperature, such as any epi-silicon or poly-silicon deposition for the formation of diodes, prior to the formation of that salicide). A 4F.sup.2 memory array is achieved with a diode matrix wherein the diodes are formed in the vertical orientation.
    Type: Application
    Filed: August 15, 2016
    Publication date: December 1, 2016
    Inventors: Daniel R. SHEPARD, Mac D. APODACA, Thomas Michael TRENT, James Juen HSU
  • Patent number: 9490426
    Abstract: In various embodiments, a memory cell for storing two or more bits of information includes two series-connected memory storage elements composed of programmable materials having different melting points, enabling independent programming of the storage elements via different current pulses.
    Type: Grant
    Filed: December 5, 2014
    Date of Patent: November 8, 2016
    Assignee: HGST, Inc.
    Inventors: Daniel R. Shepard, Mac D. Apodaca
  • Publication number: 20160293667
    Abstract: In various embodiments, a method for forming a memory array includes forming a plurality of rows and columns of hardmask material, etching holes in the one or more layers of insulating material using the combined masking properties of the rows of hardmask material and the columns of hardmask material, and forming memory cells in the holes. The corners of the holes can be rounded.
    Type: Application
    Filed: June 14, 2016
    Publication date: October 6, 2016
    Inventor: Daniel R. SHEPARD
  • Patent number: 9450182
    Abstract: In various embodiments, a memory storage element for storing two or more bits of information is formed by connecting two resistive change elements in series whereby the first resistive change element is made of a first material and the second resistive change element is made of a second material and the melting point of the first resistive change element material is greater than the melting point of the second resistive change element material such that the set and reset states of the two elements can be written and read.
    Type: Grant
    Filed: July 8, 2015
    Date of Patent: September 20, 2016
    Assignee: HGST, Inc.
    Inventors: Mac D. Apodaca, Daniel R. Shepard
  • Patent number: 9437657
    Abstract: In various embodiments, a method for forming a memory array includes forming a plurality of rows and columns of hardmask material, etching holes in the one or more layers of insulating material using the combined masking properties of the rows of hardmask material and the columns of hardmask material, and forming memory cells in the holes. The corners of the holes can be rounded.
    Type: Grant
    Filed: February 6, 2015
    Date of Patent: September 6, 2016
    Assignee: HGST, Inc.
    Inventor: Daniel R. Shepard
  • Patent number: 9431460
    Abstract: The present invention is a method of incorporating a non-volatile memory into a CMOS process that requires four or fewer masks and limited additional processing steps. The present invention is an epi-silicon or poly-silicon process sequence that is introduced into a standard CMOS process (i) after the MOS transistors' gate oxide is formed and the gate poly-silicon is deposited (thereby protecting the delicate surface areas of the MOS transistors) and (ii) before the salicided contacts to those MOS transistors are formed (thereby performing any newly introduced steps having an elevated temperature, such as any epi-silicon or poly-silicon deposition for the formation of diodes, prior to the formation of that salicide). A 4F.sup.2 memory array is achieved with a diode matrix wherein the diodes are formed in the vertical orientation.
    Type: Grant
    Filed: June 8, 2015
    Date of Patent: August 30, 2016
    Assignee: HGST, Inc.
    Inventors: Daniel R. Shepard, Mac D. Apodaca, Thomas Michael Trent, James Juen Hsu
  • Patent number: 9349448
    Abstract: The present invention is a means and method for constructing and operating a 3-D array and, more particularly, a 3-D memory array. This array can be manufactured as a monolithic integrated circuit at low cost by virtue of the limited number of steps per layer of memory elements. The low number of steps results by having the storage elements separated by a resistive component as opposed to an active component. The 3-D array is in essence, an array of 2-D resistive arrays (row-planes) having a long dimension (typically along the rows) and a short dimension (typically in the direction of the stacked layers). Any one row-plane can be isolated from the rest and be accessed independently from all of the other row-planes in the 3-D array. This makes it possible to operate and analyze a single row-plane as a mostly stand-alone circuit. The present invention lends itself to single bit accesses as well as simultaneous multiple bit accesses.
    Type: Grant
    Filed: December 19, 2014
    Date of Patent: May 24, 2016
    Assignee: HGST, INC.
    Inventor: Daniel R. Shepard
  • Patent number: 9305624
    Abstract: A memory device includes a substrate, and, disposed thereover, an array of vertical memory switches. Each switch has at least three terminals and a cross-sectional area less than 6F2.
    Type: Grant
    Filed: May 20, 2014
    Date of Patent: April 5, 2016
    Assignee: HGST, Inc.
    Inventor: Daniel R. Shepard