Patents by Inventor Daniel Ralph Piha

Daniel Ralph Piha has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9237858
    Abstract: Patient electrodes, patient monitors, defibrillators, wearable defibrillators, software and methods may warn when an electrode stops being fully attached to the patient's skin. A patient electrode includes a pad for attaching to the skin of a patient, a lead coupled to the pad, and a contact detector that can change state, when the pad does not contact fully the skin of the patient. When the detector changes state, an output device may emit an alert, for notifying a rescuer or even the patient.
    Type: Grant
    Filed: October 28, 2013
    Date of Patent: January 19, 2016
    Assignee: West Affum Holdings Corp.
    Inventors: Blaine Krusor, Isabelle Banville, Joseph Leo Sullivan, David Peter Finch, Daniel Ralph Piha, Laura Marie Gustavson, Kenneth Frederick Cowan, Richard C. Nova, Carmen Ann Chacon, Gregory T. Kavounas
  • Publication number: 20150321022
    Abstract: A portable medical device having a reliable readiness indicator. Embodiments provide a reliable readiness indicator with an active clasp that holds the garment in place. The clasp is enabled by the defibrillator when it is ready for use. If the clasp is not enabled the garment cannot be worn comfortably, and it becomes apparent to the patient that steps need to be taken to make the device ready for use.
    Type: Application
    Filed: March 18, 2015
    Publication date: November 12, 2015
    Inventors: Joseph Leo Sullivan, Isabelle Banville, Blaine Krusor, Daniel Ralph Piha, Laura Marie Gustavson, David Peter Finch, Kenneth Frederick Cowan, Richard C. Nova
  • Patent number: 9079045
    Abstract: A wearable defibrillation system can establish a local comlink with a mobile communication device, such as a smartphone, tablet-type computer and the like. The mobile communication device can in turn establish a remote comlink with other devices in a network such as the internet. Accordingly, communication tasks relating to the wearable defibrillation system can be performed via the local and the remote comlinks, with or without the participation of the patient, who is wearing the system. The wearer can thus use the familiar interface of a mobile communication device for interacting with his defibrillator system. Moreover, he can do so while keeping on his regular clothes, which could conceal completely the wearable defibrillator system. The patient can thus preserve his dignity and privacy.
    Type: Grant
    Filed: August 7, 2014
    Date of Patent: July 14, 2015
    Inventors: Kenneth Frederick Cowan, Isabelle Banville, Robert Reuben Buchanan, David Peter Finch, Joseph Leo Sullivan, Phillip D. Foshee, Jr., Laura Marie Gustavson, Daniel Ralph Piha, Carmen Ann Chacon, Blaine Krusor, Gary Debardi, Richard C. Nova, Krystyna Szul, Gregory T. Kavounas
  • Publication number: 20150039040
    Abstract: A wearable defibrillation system can establish a local comlink with a mobile communication device, such as a smartphone, tablet-type computer and the like. The mobile communication device can in turn establish a remote comlink with other devices in a network such as the internet. Accordingly, communication tasks relating to the wearable defibrillation system can be performed via the local and the remote comlinks, with or without the participation of the patient, who is wearing the system. The wearer can thus use the familiar interface of a mobile communication device for interacting with his defibrillator system. Moreover, he can do so while keeping on his regular clothes, which could conceal completely the wearable defibrillator system. The patient can thus preserve his dignity and privacy.
    Type: Application
    Filed: August 7, 2014
    Publication date: February 5, 2015
    Inventors: Kenneth Frederick Cowan, Isabelle Banville, Robert Reuben Buchanan, David Peter Finch, Joseph Leo Sullivan, Phillip D. Foshee, JR., Laura Marie Gustavson, Daniel Ralph Piha, Carmen Ann Chacon, Blaine Krusor, Gary Debardi, Richard C. Nova, Krystyna Szul, Gregory T. Kavounas
  • Patent number: 8838235
    Abstract: A wearable defibrillation system can establish a local comlink with a mobile communication device, such as a smartphone, tablet-type computer and the like. The mobile communication device can in turn establish a remote comlink with other devices in a network such as the internet. Accordingly, communication tasks relating to the wearable defibrillation system can be performed via the local and the remote comlinks, with or without the participation of the patient, who is wearing the system. The wearer can thus use the familiar interface of a mobile communication device for interacting with his defibrillator system. Moreover, he can do so while keeping on his regular clothes, which could conceal completely the wearable defibrillator system. The patient can thus preserve his dignity and privacy.
    Type: Grant
    Filed: August 6, 2013
    Date of Patent: September 16, 2014
    Assignee: Physio-Control. Inc.
    Inventors: Kenneth Frederick Cowan, Isabelle Banville, Robert Reuben Buchanan, David Peter Finch, Joseph Leo Sullivan, Phillip D. Foshee, Laura Marie Gustavson, Daniel Ralph Piha, Carmen Ann Chacon, Blaine Krusor, Gary Debardi, Richard C. Nova, Krystyna Szul, Gregory T. Kavounas
  • Publication number: 20140207201
    Abstract: In embodiments, a wearable cardiac defibrillator system includes an energy storage module configured to store a charge. Two electrodes can be configured to be applied to respective locations of a patient. One or more reservoirs can store one or more conductive fluids. Respective fluid deploying mechanisms can be configured to cause the fluids to be released from one or more of the reservoirs, which decreases the impedance at the patient location, and decreases discomfort for the patient. In some embodiments an impedance is sensed between the two electrodes, and the stored charge is delivered when the sensed impedance meets a discharge condition. In some embodiments, different fluids are released for different patient treatments. In some embodiments, fluid release is controlled to be in at least two doses, with an intervening pause.
    Type: Application
    Filed: January 22, 2014
    Publication date: July 24, 2014
    Applicant: Physio-Control, Inc.
    Inventors: Daniel Ralph Piha, Joseph Leo Sullivan, Phillip Dewey Foshee, JR., Daniel Peter Finch, Isabelle Banville, Laura Marie Gustavson, Kenneth Frederick Cowan, Richard C. Nova, Robert Reuben Buchanan, Krystyna Szul, Gregory T. Kavounas
  • Publication number: 20140200464
    Abstract: A single system may provide to a patient: temperature change, remote ischemic conditioning, and sometimes both concurrently. The system may include a patient unit that includes an inflatable bladder, and a duct having a cavity. The patient unit is intended to be applied around a patient's limb. A temperature subsystem can force a flow of a first fluid through the cavity so that the first fluid can exchange heat with the patient's limb. The pressure subsystem may force a fluid into the bladder, to establish pressure against the limb. A controller may control both the temperature subsystem and the pressure subsystem, so as to control the treatment received by the patient.
    Type: Application
    Filed: January 7, 2014
    Publication date: July 17, 2014
    Applicant: Physio-Control, Inc.
    Inventors: Brian Daniel Webster, Daniel Ralph Piha, Fred W. Chapman
  • Publication number: 20140051962
    Abstract: Patient electrodes, patient monitors, defibrillators, wearable defibrillators, software and methods may warn when an electrode stops being fully attached to the patient's skin. A patient electrode includes a pad for attaching to the skin of a patient, a lead coupled to the pad, and a contact detector that can change state, when the pad does not contact fully the skin of the patient. When the detector changes state, an output device may emit an alert, for notifying a rescuer or even the patient.
    Type: Application
    Filed: October 28, 2013
    Publication date: February 20, 2014
    Applicant: Physio-Control, Inc.
    Inventors: Blaine Krusor, Isabelle Banville, Joseph Leo Sullivan, David Peter Finch, Daniel Ralph Piha, Laura Marie Gustavson, Kenneth Frederick Cowan, Richard C. Nova, Carmen Ann Chacon, Gregory T. Kavounas
  • Publication number: 20140049377
    Abstract: RFID-based sensors, RFID readers and software sense a changed condition. In one embodiment, an RFID-based sensor includes a base that may be placed at a location where a condition may change. The sensor includes an RFID tag that is coupled to the base. The sensor also includes a detector that can be electrically coupled to the RFID tag. If the condition changes, an electrical property of the detector also changes, impacting an operation of the RFID tag. The impacted operation can be detected by an RFID reader/interrogator so as to provide a notification. An advantage over the prior art is that the condition change can be sensed wirelessly over a domain that can be laborious or hazardous to access otherwise. Moreover, RFID based sensors can be made by modifying common RFID tags.
    Type: Application
    Filed: October 28, 2013
    Publication date: February 20, 2014
    Applicant: Physio-Control, Inc.
    Inventors: Blaine Krusor, Isabelle Banville, Joseph Leo Sullivan, David Peter Finch, Daniel Ralph Piha, Laura Marie Gustavson, Kenneth Frederick Cowan, Richard C. Nova, Carmen Ann Chacon, Gregory T. Kavounas
  • Publication number: 20140046391
    Abstract: A wearable defibrillation system can establish a local comlink with a mobile communication device, such as a smartphone, tablet-type computer and the like. The mobile communication device can in turn establish a remote comlink with other devices in a network such as the internet. Accordingly, communication tasks relating to the wearable defibrillation system can be performed via the local and the remote comlinks, with or without the participation of the patient, who is wearing the system. The wearer can thus use the familiar interface of a mobile communication device for interacting with his defibrillator system. Moreover, he can do so while keeping on his regular clothes, which could conceal completely the wearable defibrillator system. The patient can thus preserve his dignity and privacy.
    Type: Application
    Filed: August 6, 2013
    Publication date: February 13, 2014
    Applicant: Physio-Control, Inc.
    Inventors: Kenneth Frederick Cowan, Isabelle Banville, Robert Reuben Buchanan, David Peter Finch, Joseph Leo Sullivan, Phillip D. Foshee, JR., Laura Marie Gustavson, Daniel Ralph Piha, Carmen Ann Chacon, Blaine Krusor, Gary Debardi, Richard C. Nova, Krystyna Szul, Gregory T. Kavounas
  • Publication number: 20140043149
    Abstract: A mobile communication device such as a smartphone or a tablet-type computer, can establish a local comlink with a wearable defibrillation system. At the same time, the mobile communication device can establish a remote comlink with other devices in a network such as the internet. Accordingly, communication tasks relating to the wearable defibrillation system can be performed via the local and the remote comlinks, with or without the participation of the patient, who is wearing the system. The patient can thus use the familiar interface of a mobile communication device for interacting with his defibrillator system. Moreover, he can do so while keeping on his regular clothes, which could conceal completely the wearable defibrillator system. The patient can thus preserve his dignity and privacy.
    Type: Application
    Filed: August 6, 2013
    Publication date: February 13, 2014
    Applicant: Physio-Control, Inc
    Inventors: Kenneth Frederick Cowan, Isabelle Banville, Robert Reuben Buchanan, David Peter Finch, Joseph Leo Sullivan, Phillip D. Foshee, JR., Laura Marie Gustavson, Daniel Ralph Piha, Carmen Ann Chacon, Blaine Krusor, Gary Debardi, Richard C. Nova, Krystyna Szul, Gregory T. Kavounas