Patents by Inventor Daniel Robert Miklos

Daniel Robert Miklos has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20120175302
    Abstract: Waste-treatment processes are enhanced through generation and introduction of specific biological populations customized to perform or favor specific tasks either during the main process, for the formation or precipitation of certain biological nutrients, or to accomplish solids formation reduction in a post-treatment process. These bacteria may be grown from specialized mixes of activated sludge and waste influent by exposing these materials to controlled environments (e.g., in an off-line treatment area). They may then be returned to the main process to perform certain tasks such as converting particulate cBOD into soluble cBOD for utilization, to reduce high solids yield organisms by supplementing the population characteristics with low yield organism characteristics, to provide biological nutrients or oxygenation assistance, to improve nitrification/denitrification efficiency, or to disfavor filamentous biology such as Norcardia sp.
    Type: Application
    Filed: August 22, 2011
    Publication date: July 12, 2012
    Inventor: Daniel Robert Miklos
  • Patent number: 8002986
    Abstract: Waste-treatment processes are enhanced through generation and introduction of specific biological populations customized to perform or favor specific tasks either during the main process, for the formation or precipitation of certain biological nutrients, or to accomplish solids formation reduction in a post-treatment process. These bacteria may be grown from specialized mixes of activated sludge and waste influent by exposing these materials to controlled environments (e.g., in an off-line treatment area). They may then be returned to the main process to perform certain tasks such as converting particulate cBOD into soluble cBOD for utilization, to reduce high solids yield organisms by supplementing the population characteristics with low yield organism characteristics, to provide biological nutrients or oxygenation assistance, to improve nitrification/denitrification efficiency, or to disfavor filamentous biology such as Norcardia sp.
    Type: Grant
    Filed: August 26, 2005
    Date of Patent: August 23, 2011
    Inventor: Daniel Robert Miklos
  • Patent number: 7854842
    Abstract: Waste-treatment processes are enhanced through generation and introduction of specific biological populations customized to perform or favor specific tasks either during the main process, for the formation or precipitation of certain biological nutrients, or to accomplish solids formation reduction in a post-treatment process. These bacteria may be grown from specialized mixes of activated sludge and waste influent by exposing these materials to controlled environments (e.g., in an off-line treatment area). They may then be returned to the main process to perform certain tasks such as converting particulate cBOD into soluble cBOD for utilization, to reduce high solids yield organisms by supplementing the population characteristics with low yield organism characteristics, to provide biological nutrients or oxygenation assistance, to improve nitrification/denitrification efficiency, or to disfavor filamentous biology such as Norcardia sp.
    Type: Grant
    Filed: August 29, 2005
    Date of Patent: December 21, 2010
    Inventor: Daniel Robert Miklos
  • Patent number: 7850850
    Abstract: Waste-treatment processes are enhanced through generation and introduction of specific biological populations customized to perform or favor specific tasks either during the main process, for the formation or precipitation of certain biological nutrients, or to accomplish solids formation reduction in a post-treatment process. These bacteria may be grown from specialized mixes of activated sludge and waste influent by exposing these materials to controlled environments (e.g., in an off-line treatment area). They may then be returned to the main process to perform certain tasks such as converting particulate cBOD into soluble cBOD for utilization, to reduce high solids yield organisms by supplementing the population with low yield organisms, to provide biological nutrients or oxygenation assistance, to improve nitrification/denitrification efficiency, or to disfavor filamentous biology such as Norcardia sp.
    Type: Grant
    Filed: August 26, 2005
    Date of Patent: December 14, 2010
    Inventor: Daniel Robert Miklos
  • Publication number: 20100084337
    Abstract: Waste-treatment processes are enhanced through generation and introduction of specific biological populations customized to perform or favor specific tasks either during the main process, for the formation or precipitation of certain biological nutrients, or to accomplish solids formation reduction in a post-treatment process. These bacteria may be grown from specialized mixes of activated sludge and waste influent by exposing these materials to controlled environments (e.g., in an off-line treatment area). They may then be returned to the main process to perform certain tasks such as converting particulate cBOD into soluble cBOD for utilization, to reduce high solids yield organisms by supplementing the population characteristics with low yield organism characteristics, to provide biological nutrients or oxygenation assistance, to improve nitrification/denitrification efficiency, or to disfavor filamentous biology such as Norcardia sp.
    Type: Application
    Filed: December 8, 2009
    Publication date: April 8, 2010
    Inventor: Daniel Robert Miklos
  • Patent number: 7429328
    Abstract: Waste-treatment processes are enhanced through generation and introduction of specific biological populations customized to perform or favor specific tasks either during the main process, for the formation or precipitation of certain biological nutrients, or to accomplish solids formation reduction in a post-treatment process. These bacteria may be grown from specialized mixes of activated sludge and waste influent by exposing these materials to controlled environments (e.g., in an off-line treatment area). They may then be returned to the main process to perform certain tasks such as converting particulate cBOD into soluble cBOD for utilization, to reduce high solids yield organisms by supplementing the population characteristics with low yield organism characteristics, to provide biological nutrients or oxygenation assistance, to improve nitrification/denitrification efficiency, or to disfavor filamentous biology such as Norcardia sp.
    Type: Grant
    Filed: August 26, 2005
    Date of Patent: September 30, 2008
    Assignee: Advanced Treatment Sciences, Inc.
    Inventor: Daniel Robert Miklos
  • Patent number: 6833074
    Abstract: Waste-treatment processes are enhanced through generation and introduction of specific biological populations customized to perform or favor specific, tasks either during the main process, or for solids minimization purposes in a post-treatment process. These bacteria may be grown from specialized mixes of activated sludge and waste influent by exposing these materials to controlled environments (e.g., in an off-line treatment area). They may then be added back to the main process to perform certain tasks such as converting particulate cBOD into soluble cBOD for utilization, to reduce high solids yield organisms by supplementing the population with low yield organisms, to improve nitrification/denitrification efficiency, or to disfavor filamentous biology such as Norcardia sp.
    Type: Grant
    Filed: September 9, 2003
    Date of Patent: December 21, 2004
    Inventor: Daniel Robert Miklos
  • Patent number: 6660163
    Abstract: Waste-treatment processes are enhanced through generation and introduction of specific biological populations customized to perform or favor specific tasks either during the main process, or for solids minimization purposes in a post-treatment process. These bacteria may be grown from specialized mixes of activated sludge and waste influent by exposing these materials to controlled environments (e.g., in an off-line treatment area). They may then be added back to the main process to perform certain tasks such as converting particulate cBOD into soluble cBOD for utilization, to reduce high solids yield organisms by supplementing the population with low yield organisms, to improve nitrification/denitrification efficiency, or to disfavor filamentous biology such as Norcardia sp.
    Type: Grant
    Filed: March 2, 2001
    Date of Patent: December 9, 2003
    Inventor: Daniel Robert Miklos