Patents by Inventor Daniel Rosenbaum

Daniel Rosenbaum has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11905297
    Abstract: Methods and compositions for agonizing a type-2 orexin receptor (OX2R) in a cell determined to be in need thereof, including the general method of (a) administering to a subject a cyclic guanidinyl OX2R agonist and (b) detecting a resultant enhanced wakefulness or increased resistance to diet-induced accumulation of body fat, or abbreviated recovery from general anesthesia or jet lag.
    Type: Grant
    Filed: October 21, 2022
    Date of Patent: February 20, 2024
    Assignee: Board of Regents, The University of Texas System
    Inventors: Jef De Brabander, Daniel Rosenbaum, Qiren Liang, Wentian Wang
  • Publication number: 20230122024
    Abstract: Methods and compositions for agonizing a type-2 orexin receptor (OX2R) in a cell determined to be in need thereof, including the general method of (a) administering to a subject a cyclic guanidinyl OX2R agonist and (b) detecting a resultant enhanced wakefulness or increased resistance to diet-induced accumulation of body fat, or abbreviated recovery from general anesthesia or jet lag.
    Type: Application
    Filed: October 21, 2022
    Publication date: April 20, 2023
    Applicant: Board of Regents, The University of Texas System
    Inventors: Jef De Brabander, Daniel Rosenbaum, Qiren Liang, Wentian Wang
  • Patent number: 11479560
    Abstract: Methods and compositions for agonizing a type-2 orexin receptor (OX2R) in a cell determined to be in need thereof, including the general method of (a) administering to a subject a cyclic guanidinyl OX2R agonist and (b) detecting a resultant enhanced wakefulness or increased resistance to diet-induced accumulation of body fat, or abbreviated recovery from general anesthesia or jet lag.
    Type: Grant
    Filed: November 20, 2020
    Date of Patent: October 25, 2022
    Inventors: Jef De Brabander, Daniel Rosenbaum, Qiren Liang, Wentian Wang
  • Patent number: 11472813
    Abstract: Methods and compositions for agonizing a type-2 orexin receptor (OX2R) in a cell determined to be in need thereof, including the general method of (a) administering to a subject a cyclic guanidinyl OX2R agonist and (b) detecting a resultant enhanced wakefulness or increased resistance to diet-induced accumulation of body fat, or abbreviated recovery from general anesthesia or jet lag.
    Type: Grant
    Filed: September 27, 2020
    Date of Patent: October 18, 2022
    Assignee: Board of Regents, The University of Texas System
    Inventors: Jef De Brabander, Daniel Rosenbaum, Qiren Liang, Wentian Wang
  • Publication number: 20210163494
    Abstract: Methods and compositions for agonizing a type-2 orexin receptor (OX2R) in a cell determined to be in need thereof, including the general method of (a) administering to a subject a cyclic guanidinyl OX2R agonist and (b) detecting a resultant enhanced wakefulness or increased resistance to diet-induced accumulation of body fat, or abbreviated recovery from general anesthesia or jet lag.
    Type: Application
    Filed: November 20, 2020
    Publication date: June 3, 2021
    Applicant: Board of Regents, The University of Texas System
    Inventors: Jef De Brabander, Daniel Rosenbaum, Qiren Liang, Wentian Wang
  • Publication number: 20210107914
    Abstract: Methods and compositions for agonizing a type-2 orexin receptor (OX2R) in a cell determined to be in need thereof, including the general method of (a) administering to a subject a cyclic guanidinyl OX2R agonist and (b) detecting a resultant enhanced wakefulness or increased resistance to diet-induced accumulation of body fat, or abbreviated recovery from general anesthesia or jet lag.
    Type: Application
    Filed: September 27, 2020
    Publication date: April 15, 2021
    Applicant: Board of Regents, The University of Texas System
    Inventors: Jef De Brabander, Daniel Rosenbaum, Qiren Liang, Wentian Wang
  • Patent number: 9670266
    Abstract: Certain embodiments provide a method for crystallizing a GPCR. The method may employ a fusion protein comprising: a) a first portion of a G-protein coupled receptor (GPCR), where the first portion comprises the TM1, TM2, TM3, TM4 and TM5 regions of the GPCR; b) a stable, folded protein insertion; and c) a second portion of the GPCR, where the second portion comprises the TM6 and TM7 regions of the GPCR.
    Type: Grant
    Filed: April 10, 2015
    Date of Patent: June 6, 2017
    Assignee: The Board of Trustees of the Leland Stanford Junior University
    Inventors: Brian Kobilka, Daniel Rosenbaum
  • Publication number: 20150210751
    Abstract: Certain embodiments provide a method for crystallizing a GPCR. The method may employ a fusion protein comprising: a) a first portion of a G-protein coupled receptor (GPCR), where the first portion comprises the TM1, TM2, TM3, TM4 and TM5 regions of the GPCR; b) a stable, folded protein insertion; and c) a second portion of the GPCR, where the second portion comprises the TM6 and TM7 regions of the GPCR.
    Type: Application
    Filed: April 10, 2015
    Publication date: July 30, 2015
    Inventors: Brian Kobilka, Daniel Rosenbaum
  • Patent number: 9045561
    Abstract: Certain embodiments provide a method for crystallizing a GPCR. The method may employ a fusion protein comprising: a) a first portion of a G-protein coupled receptor (GPCR), where the first portion comprises the TM1, TM2, TM3, TM4 and TM5 regions of the GPCR; b) a stable, folded protein insertion; and c) a second portion of the GPCR, where the second portion comprises the TM6 and TM7 regions of the GPCR.
    Type: Grant
    Filed: December 18, 2013
    Date of Patent: June 2, 2015
    Assignee: THE BOARD OF TRUSTEE OF THE LELAND STANFORD JUNIOR UNIVERSITY
    Inventors: Brian Kobilka, Daniel Rosenbaum
  • Publication number: 20140194595
    Abstract: Certain embodiments provide a method for crystallizing a GPCR. The method may employ a fusion protein comprising: a) a first portion of a G-protein coupled receptor (GPCR), where the first portion comprises the TM1, TM2, TM3, TM4 and TM5 regions of the GPCR; b) a stable, folded protein insertion; and c) a second portion of the GPCR, where the second portion comprises the TM6 and TM7 regions of the GPCR.
    Type: Application
    Filed: December 18, 2013
    Publication date: July 10, 2014
    Inventors: Brian Kobilka, Daniel Rosenbaum
  • Patent number: 8637639
    Abstract: Certain embodiments provide a method for crystallizing a GPCR. The method may employ a fusion protein comprising: a) a first portion of a G-protein coupled receptor (GPCR), where the first portion comprises the TM1, TM2, TM3, TM4 and TM5 regions of the GPCR; b) a stable, folded protein insertion; and c) a second portion of the GPCR, where the second portion comprises the TM6 and TM7 regions of the GPCR.
    Type: Grant
    Filed: March 30, 2012
    Date of Patent: January 28, 2014
    Assignee: The Board of Trustees of the Leland Stanford Junior University
    Inventors: Brian Kobilka, Daniel Rosenbaum
  • Publication number: 20130197192
    Abstract: Certain embodiments provide a method for crystallizing a GPCR. The method may employ a fusion protein comprising: a) a first portion of a G-protein coupled receptor (GPCR), where the first portion comprises the TM1, TM2, TM3, TM4 and TM5 regions of the GPCR; b) a stable, folded protein insertion; and c) a second portion of the GPCR, where the second portion comprises the TM6 and TM7 regions of the GPCR.
    Type: Application
    Filed: March 30, 2012
    Publication date: August 1, 2013
    Inventors: BRIAN KOBILKA, DANIEL ROSENBAUM
  • Patent number: 8329432
    Abstract: Certain embodiments provide a method for crystallizing a GPCR. The method may employ a fusion protein comprising: a) a first portion of a G-protein coupled receptor (GPCR), where the first portion comprises the TM1, TM2, TM3, TM4 and TM5 regions of the GPCR; b) a stable, folded protein insertion; and c) a second portion of the GPCR, where the second portion comprises the TM6 and TM7 regions of the GPCR.
    Type: Grant
    Filed: February 16, 2011
    Date of Patent: December 11, 2012
    Assignee: The Board of Trustees of the Leland Stanford Junior University
    Inventors: Brian Kobilka, Daniel Rosenbaum
  • Patent number: 8260596
    Abstract: Certain embodiments provide a method for crystallizing a GPCR. The method may employ a fusion protein comprising: a) a first portion of a G-protein coupled receptor (GPCR), where the first portion comprises the TM1, TM2, TM3, TM4 and TM5 regions of the GPCR; b) a stable, folded protein insertion; and c) a second portion of the GPCR, where the second portion comprises the TM6 and TM7 regions of the GPCR.
    Type: Grant
    Filed: June 23, 2010
    Date of Patent: September 4, 2012
    Assignee: The Board of Trustees of the Leland Stanford Junior University
    Inventors: Brian Kobilka, Daniel Rosenbaum
  • Publication number: 20120136137
    Abstract: Certain embodiments provide a method for crystallizing a GPCR. The method may employ a fusion protein comprising: a) a first portion of a G-protein coupled receptor (GPCR), where the first portion comprises the TM1, TM2, TM3, TM4 and TM5 regions of the GPCR; b) a stable, folded protein insertion; and c) a second portion of the GPCR, where the second portion comprises the TM6 and TM7 regions of the GPCR.
    Type: Application
    Filed: February 16, 2011
    Publication date: May 31, 2012
    Inventors: Brian Kobilka, Daniel Rosenbaum
  • Patent number: 8178655
    Abstract: Certain embodiments provide a method for crystallizing a GPCR. The method may employ a fusion protein comprising: a) a first portion of a G-protein coupled receptor (GPCR), where the first portion comprises the TM1, TM2, TM3, TM4 and TM5 regions of the GPCR; b) a stable, folded protein insertion; and c) a second portion of the GPCR, where the second portion comprises the TM6 and TM7 regions of the GPCR.
    Type: Grant
    Filed: February 16, 2011
    Date of Patent: May 15, 2012
    Assignee: The Board of Trustees of the Leland Stanford Junior University
    Inventors: Brian Kobilka, Daniel Rosenbaum
  • Patent number: 8139715
    Abstract: Certain embodiments provide a method for crystallizing a GPCR. The method may employ a fusion protein comprising: a) a first portion of a G-protein coupled receptor (GPCR), where the first portion comprises the TM1, TM2, TM3, TM4 and TM5 regions of the GPCR; b) a stable, folded protein insertion; and c) a second portion of the GPCR, where the second portion comprises the TM6 and TM7 regions of the GPCR.
    Type: Grant
    Filed: February 16, 2011
    Date of Patent: March 20, 2012
    Assignee: The Board of Trustees of the Leland Stanford Junior University
    Inventors: Brian Kobilka, Daniel Rosenbaum
  • Patent number: 8071742
    Abstract: Certain embodiments provide a method for crystallizing a GPCR. The method may employ a fusion protein comprising: a) a first portion of a G-protein coupled receptor (GPCR), where the first portion comprises the TM1, TM2, TM3, TM4 and TM5 regions of the GPCR; b) a stable, folded protein insertion; and c) a second portion of the GPCR, where the second portion comprises the TM6 and TM7 regions of the GPCR.
    Type: Grant
    Filed: February 16, 2011
    Date of Patent: December 6, 2011
    Assignee: The Board of Trustees of the Leland Stanford Junior University
    Inventors: Brian Kobilka, Daniel Rosenbaum
  • Publication number: 20110189756
    Abstract: Certain embodiments provide a method for crystallizing a GPCR. The method may employ a fusion protein comprising: a) a first portion of a G-protein coupled receptor (GPCR), where the first portion comprises the TM1, TM2, TM3, TM4 and TM5 regions of the GPCR; b) a stable, folded protein insertion; and c) a second portion of the GPCR, where the second portion comprises the TM6 and TM7 regions of the GPCR.
    Type: Application
    Filed: February 16, 2011
    Publication date: August 4, 2011
    Inventors: Brian Kobilka, Daniel Rosenbaum
  • Publication number: 20110171728
    Abstract: Certain embodiments provide a method for crystallizing a GPCR. The method may employ a fusion protein comprising: a) a first portion of a G-protein coupled receptor (GPCR), where the first portion comprises the TM1, TM2, TM3, TM4 and TM5 regions of the GPCR; b) a stable, folded protein insertion; and c) a second portion of the GPCR, where the second portion comprises the TM6 and TM7 regions of the GPCR.
    Type: Application
    Filed: February 16, 2011
    Publication date: July 14, 2011
    Inventors: Brian Kobilka, Daniel Rosenbaum