Patents by Inventor Daniel Rosenberg

Daniel Rosenberg has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10705643
    Abstract: A tactile touch sensor (TTS) system and method allowing physical augmentation of a high-resolution touch sensor array (TSA) is disclosed. Physical augmentation is accomplished using a TSA physical overlay (TPO) placed on top of the TSA. The TPO is constructed to transmit forces to the underlying TSA. Force transmission is accomplished by either using a flexible overlay or with a rigid mechanical overlay that transmits user forces exerted on the overlay to the underlying TSA. Incorporation of TPO identifiers (TPI) within the TPO permits identification of the TPO by a TPO detector (TPD) allowing operational characteristics of the TSA to be automatically reconfigured to conform to the currently applied TPO structure by a user computing device (UCD). The UCD may be configured to automatically load an appropriate application software driver (ASD) in response to a TPI read by the TPD from the currently applied TPO.
    Type: Grant
    Filed: January 28, 2019
    Date of Patent: July 7, 2020
    Assignee: Sensel, Inc.
    Inventors: IIya Daniel Rosenberg, John Aaron Zarraga
  • Publication number: 20200210026
    Abstract: The present invention relates to touch-sensor detector systems and methods incorporating an interpolated variable impedance touch sensor array and specifically to such systems and methods for force-aware interaction with handheld display devices on one or more surfaces of the device. An exemplary embodiment includes a method for receiving a flexing gesture formed on a sensor panel of the handheld device including determining two or more pressure inputs at the sensor panel and determining a relative pressure between the two or more pressure inputs. The method further includes correlating the relative pressure inputs to the flexing gesture, associating the flexing gesture with a UI element and providing an input to the UI element based on the gesture and the relative pressure between the two or more pressure inputs.
    Type: Application
    Filed: December 23, 2019
    Publication date: July 2, 2020
    Inventors: John Aaron Zarraga, Alexander Meagher Grau, Bethany Noel Haniger, Bradley James Bozarth, Brogan Carl Miller, Ilya Daniel Rosenberg, James Frank Thomas, Mark Joshua Rosenberg, Peter Hans Nyboer, Reuben Eric Martinez, Scott Gregory Isaacson, Stephanie Jeanne Oberg, Timothy James Miller, Tomer Moscovich, Yibo Yu
  • Publication number: 20200174657
    Abstract: One variation of a system for interfacing a computer system and a user includes: a touch sensor defining a touch sensor surface and extending over an array of sense electrode and drive electrode pairs; a vibrator coupled to the touch sensor surface; and a controller configured to: detect application of an input onto the touch sensor surface and a force magnitude of the first input at a first time; execute a down-click cycle in response to the force magnitude exceeding a threshold magnitude by driving the vibrator to oscillate the touch sensor surface; map a location of the input on the touch sensor surface to a key of a keyboard represented by the touch sensor surface; and output a touch image representing the key and the force magnitude of the input on the touch sensor surface at approximately the first time.
    Type: Application
    Filed: December 26, 2019
    Publication date: June 4, 2020
    Inventors: Ilya Daniel Rosenberg, John Aaron Zarraga, Tomer Moscovich
  • Publication number: 20200159361
    Abstract: One variation of a method for manipulating virtual objects within a virtual environment includes: determining a first position of a touch sensor within real space; based on the first position of the touch sensor within real space, bounding a virtual surface of a virtual object within the virtual environment tractable through inputs across the touch sensor; generating a first force vector comprising a magnitude related to a force magnitude of a first input on the touch sensor surface and a direction related to an orientation of the touch sensor within real space; locating an origin of the first force vector within the virtual environment based on a first location of the first input on the touch sensor surface and the first position of the touch sensor within real space; and manipulating the virtual surface of the virtual object within the virtual environment according to the first force vector.
    Type: Application
    Filed: January 22, 2020
    Publication date: May 21, 2020
    Inventors: Ilya Daniel Rosenberg, John Aaron Zarraga, Alexander Meagher Grau, Charles Robert Watson
  • Patent number: 10656763
    Abstract: Facilitating dynamic adjustment of a click/unclick threshold corresponding to a force-based tactile sensor is presented herein. A system can comprise a tactile sensor comprising force-based sensor(s); and a motion detection component that can determine a rate of change of a movement that has been detected via a group of sensors comprising the force-based sensor(s), and based on the rate of change of the movement, modify a defined sensitivity of the force-based sensor(s) with respect to detection of a click and/or unclick event corresponding to the tactile sensor. Further, the motion detection component can decrease the defined sensitivity with respect to detection of the click and/or unclick event in response to the rate of change being determined to satisfy a defined condition representing an increase in the speed at which the stylus or the finger has moved across the tactile sensor.
    Type: Grant
    Filed: January 4, 2019
    Date of Patent: May 19, 2020
    Assignee: SENSEL, INC.
    Inventors: Tomer Moscovich, Ilya Daniel Rosenberg
  • Patent number: 10654769
    Abstract: Metal oxide catalysts comprising various dopants are provided. The catalysts are useful as heterogenous catalysts in a variety of catalytic reactions, for example, the oxidative coupling of methane to C2 hydrocarbons such as ethane and ethylene. Related methods for use and manufacture of the same are also disclosed.
    Type: Grant
    Filed: April 3, 2018
    Date of Patent: May 19, 2020
    Assignee: Siluria Technologies, Inc.
    Inventors: Joel M. Cizeron, Erik C. Scher, Fabio R. Zurcher, Wayne P. Schammel, Greg Nyce, Anja Rumplecker, Jarod McCormick, Marian Alcid, Joel Gamoras, Daniel Rosenberg, Erik-Jan Ras
  • Patent number: 10642414
    Abstract: One variation of a method for detecting and characterizing force inputs on a surface includes: during a resistance scan cycle of a sampling period, driving a shield electrode arranged over a resistive touch sensor to a reference potential and reading resistance values across sense electrode and drive electrode pairs in the resistive touch sensor; during a processing cycle of the sampling period, transforming the resistance values into a position and a magnitude of a force applied to a tactile surface over the shield electrode, releasing the shield electrode from the reference potential, reading a capacitance value of the shield electrode, and detecting proximity of an object to the tactile surface based on the capacitance value; and generating a touch image representing the position and the magnitude of the force on the tactile surface based on the proximity of the object to the tactile surface.
    Type: Grant
    Filed: February 26, 2019
    Date of Patent: May 5, 2020
    Assignee: Sensel Inc.
    Inventors: Ilya Daniel Rosenberg, John Aaron Zarraga, Charles Watson
  • Publication number: 20200110506
    Abstract: A touch sensor detector system and method incorporating an interpolated sensor array is disclosed. The system and method utilize a touch sensor array (TSA) configured to detect proximity/contact/pressure (PCP) via a variable impedance array (VIA) electrically coupling interlinked impedance columns (IIC) coupled to an array column driver (ACD), and interlinked impedance rows (IIR) coupled to an array row sensor (ARS). The ACD is configured to select the IIC based on a column switching register (CSR) and electrically drive the IIC using a column driving source (CDS). The VIA conveys current from the driven IIC to the IIC sensed by the ARS. The ARS selects the IIR within the TSA and electrically senses the IIR state based on a row switching register (RSR). Interpolation of ARS sensed current/voltage allows accurate detection of TSA PCP and/or spatial location.
    Type: Application
    Filed: December 2, 2019
    Publication date: April 9, 2020
    Inventors: IIya Daniel Rosenberg, John Aaron Zarraga
  • Publication number: 20200089367
    Abstract: The present invention relates to interpolated variable impedance touch sensor arrays for force-aware large-surface device interaction. An exemplary system for detecting a continuous pressure curve includes a plurality of physical variable impedance array (VIA) columns connected by interlinked impedance columns and a plurality of physical VIA rows connected by interlinked impedance rows. The system also includes a plurality of column drive sources connected to the interlinked impedance columns and to the plurality of physical VIA columns through the interlinked impedance columns as well as a plurality of row sense sinks connected to the interlinked impedance rows and to the plurality of physical VIA rows through the interlinked impedance rows. Further, the system includes a processor configured to interpolate the continuous pressure curve in the physical VIA columns and physical VIA rows from an electrical signal from the plurality of column drive sources sensed at the plurality of row sense sinks.
    Type: Application
    Filed: July 23, 2019
    Publication date: March 19, 2020
    Inventors: John Aaron Zarraga, Alexander Meagher Grau, Bethany Noel Haniger, Bradley James Bozarth, Brogan Carl Miller, Ilya Daniel Rosenberg, James Frank Thomas, Mark Joshua Rosenberg, Peter Hans Nyboer, Reuben Eric Martinez, Scott Gregory Isaacson, Stephanie Jeanne Oberg, Timothy James Miller, Tomer Moscovich, Yibo Yu
  • Publication number: 20200089400
    Abstract: The present invention relates to touch sensor detectors incorporating interpolated variable impedance touch sensor arrays and specifically to detectors for non-planar touch controls. Variable impedance touch sensor arrays are applied to the surface of objects, inside objects, or other objects such that touches are detected directly or indirectly from the non-planar touch controls. An exemplary system includes a plurality of sensor panels on a plurality of device and a processor communicatively coupled to the sensor panels. The sensor panels include a plurality of physical VIA columns connected by interlinked impedance columns and a plurality of physical VIA rows connected by interlinked impedance rows. The processor detects touches at a first time at the sensor panels, determines that the two or more touches at the first time are arranged in a pattern corresponding to a predetermined gesture, and determines a relative pressure between the two or more touches.
    Type: Application
    Filed: September 12, 2019
    Publication date: March 19, 2020
    Inventors: John Aaron Zarraga, Alexander Meagher Grau, Bethany Noel Haniger, Bradley James Bozarth, Brogan Carl Miller, Ilya Daniel Rosenberg, James Frank Thomas, Mark Joshua Rosenberg, Peter Hans Nyboer, Reuben Eric Martinez, Scott Gregory Isaacson, Stephanie Jeanne Oberg, Timothy James Miller, Tomer Moscovich, Yibo Yu
  • Publication number: 20200089383
    Abstract: The present invention relates to touch sensor detector systems and methods incorporating an interpolated variable impedance touch sensor array and specifically to such systems and methods for gesture recognition and associating a UI element with the recognized gesture. In one embodiment, the present invention provides a variable impedance array (VIA) system for receiving a gesture that includes: a plurality of physical VIA columns connected by interlinked impedance columns; a plurality of physical VIA rows connected by interlinked impedance rows; and a processor configured to interpolate a location and/or pressure of the gesture in the physical columns and rows from an electrical signal from a plurality of column drive sources (connected to the plurality of physical VIA columns through the interlinked impedance columns) sensed at a plurality of row sense sinks (connected to the plurality of physical VIA rows through the interlinked impedance rows).
    Type: Application
    Filed: April 15, 2019
    Publication date: March 19, 2020
    Inventors: John Aaron Zarraga, Alexander Meagher Grau, Bethany Noel Haniger, Bradley James Bozarth, Brogan Carl Miller, Ilya Daniel Rosenberg, James Frank Thomas, Mark Joshua Rosenberg, Peter Hans Nyboer, Reuben Eric Martinez, Scott Gregory Isaacson, Stephanie Jeanne Oberg, Timothy James Miller, Tomer Moscovich, Yibo Yu
  • Patent number: 10564839
    Abstract: One variation of a system for interfacing a computer system and a user includes: a touch sensor defining a touch sensor surface and extending over an array of sense electrode and drive electrode pairs; a vibrator coupled to the touch sensor surface; and a controller configured to: detect application of an input onto the touch sensor surface and a force magnitude of the first input at a first time; execute a down-click cycle in response to the force magnitude exceeding a threshold magnitude by driving the vibrator to oscillate the touch sensor surface; map a location of the input on the touch sensor surface to a key of a keyboard represented by the touch sensor surface; and output a touch image representing the key and the force magnitude of the input on the touch sensor surface at approximately the first time.
    Type: Grant
    Filed: December 18, 2017
    Date of Patent: February 18, 2020
    Assignee: Sensel Inc.
    Inventors: Ilya Daniel Rosenberg, John Aaron Zarraga, Tomer Moscovich
  • Publication number: 20200050304
    Abstract: One variation of a method includes: defining a first capacitance gradient of capacitance thresholds spanning a capacitive touch sensor; defining a first pressure gradient of pressure thresholds spanning a pressure sensor; reading a capacitance value from the capacitive touch sensor proximal a first location; detecting presence of a first input at the first location in response to the capacitance value exceeding a capacitance threshold assigned to the first location; reading a pressure value from the pressure sensor proximal the first location; detecting presence of a second input proximal the first location in response to the pressure value exceeding a pressure threshold; in response to detecting the first input and detecting the second input: merging the first input and the second input into a confirmed touch input; and generating a first touch image representing the first location and the pressure value of the confirmed touch input.
    Type: Application
    Filed: October 17, 2019
    Publication date: February 13, 2020
    Inventors: Ilya Daniel Rosenberg, John Aaron Zarraga
  • Publication number: 20200042122
    Abstract: One variation of a method for characterizing inputs includes: scanning an array of sense electrodes at a first resolution to generate a first force image; detecting a first force input in the first force image; in response to a first geometry dimension of the first force input exceeding a first threshold, characterizing the first force input as a non-stylus input type; in response to the first geometry dimension of the first force input remaining below the first threshold: scanning the array of sense electrodes at a second resolution; detecting a second force input in a second force image; and, in response to a ratio of a force magnitude of the second force input to a geometry dimension of the second force input exceeding a second threshold, characterizing the first force input as a stylus input type; and outputting a location and a type of the first force input.
    Type: Application
    Filed: October 11, 2019
    Publication date: February 6, 2020
    Inventors: Ilya Daniel Rosenberg, John Aaron Zarraga, Tomer Moscovich
  • Publication number: 20200024214
    Abstract: Catalytic forms and formulations are provided. The catalytic forms and formulations are useful in a variety of catalytic reactions, for example, the oxidative coupling of methane. Related methods for use and manufacture of the same are also disclosed.
    Type: Application
    Filed: March 27, 2019
    Publication date: January 23, 2020
    Inventors: Joel M. Cizeron, Fabio R. Zurcher, Jarod McCormick, Joel Gamoras, Roger Vogel, Joel David Vincent, Greg Nyce, Wayne P. Schammel, Erik C. Scher, Daniel Rosenberg, Erik-Jan Ras, Erik Freer
  • Publication number: 20200016580
    Abstract: Catalysts, catalytic forms and formulations, and catalytic methods are provided. The catalysts and catalytic forms and formulations are useful in a variety of catalytic reactions, for example, the oxidative coupling of methane. Related methods for use and manufacture of the same are also disclosed.
    Type: Application
    Filed: March 20, 2019
    Publication date: January 16, 2020
    Inventors: Erik M. Freer, Wayne P. Schammel, Fabio R. Zurcher, Joel M. Cizeron, Jin Ki Hong, Anja Rumplecker, Sam Maurer, Joel Gamoras, Daniel Rosenberg, Erik C. Scher
  • Patent number: 10534478
    Abstract: A touch sensor detector system and method incorporating an interpolated sensor array is disclosed. The system and method utilize a touch sensor array (TSA) configured to detect proximity/contact/pressure (PCP) via a variable impedance array (VIA) electrically coupling interlinked impedance columns (IIC) coupled to an array column driver (ACD), and interlinked impedance rows (IIR) coupled to an array row sensor (ARS). The ACD is configured to select the IIC based on a column switching register (CSR) and electrically drive the IIC using a column driving source (CDS). The VIA conveys current from the driven IIC to the IIC sensed by the ARS. The ARS selects the IIR within the TSA and electrically senses the IIR state based on a row switching register (RSR). Interpolation of ARS sensed current/voltage allows accurate detection of TSA PCP and/or spatial location.
    Type: Grant
    Filed: September 10, 2018
    Date of Patent: January 14, 2020
    Assignee: Sensel, Inc.
    Inventors: Ilya Daniel Rosenberg, John Aaron Zarraga
  • Publication number: 20190381779
    Abstract: Techniques for modifying surfaces of electrodes are provided. An electrode surface can be processed by applying an abrasive material or chemical solution to or against the surface to modify the surface to reduce the amount of roughness on, and/or alter the shape of, the surface. The shape of the surface can be altered by rounding or doming the surface. During surface processing, flexible or compressible support material can be applied to the back of an abrasive material, such as sandpaper, to desirably distribute pressure from the support material to the sandpaper and/or mold the shape of the sandpaper to facilitate maintaining desirable contact by the sandpaper on electrode surfaces. With regard to a flexible circuit board on which electrodes are formed, a vacuum chuck component or a temporary abrasive can be used to hold the circuit board in a flat and stationary position during surface processing.
    Type: Application
    Filed: June 19, 2018
    Publication date: December 19, 2019
    Inventors: Scott Gregory ISAACSON, Ilya Daniel ROSENBERG, Stephanie Jeanne OBERG, Brogan Carl MILLER
  • Patent number: 10489004
    Abstract: One variation of a method for characterizing inputs on a touch sensor surface includes scanning an array of sense electrodes at a first resolution to generate a first force image; in response to detecting a subset of force values in the first force image exceeding a first force threshold, detecting a first force input in the first force image; in response to detecting a second force input within a threshold distance of the first force input in the first force image, entering a second mode comprising: characterizing the first force input and the second force input as a singular input defining a singular input area encompassing the first force input and the second force input and a singular input force magnitude defined by a combination of force values of the first force input and the second force input; and outputting a location and force values of the singular input.
    Type: Grant
    Filed: September 11, 2017
    Date of Patent: November 26, 2019
    Assignee: Sensel Inc.
    Inventors: Ilya Daniel Rosenberg, John Aaron Zarraga, Tomer Moscovich
  • Patent number: 10488996
    Abstract: One variation of a method includes: defining a first capacitance gradient of capacitance thresholds spanning a capacitive touch sensor; defining a first pressure gradient of pressure thresholds spanning a pressure sensor; reading a capacitance value from the capacitive touch sensor proximal a first location; detecting presence of a first input at the first location in response to the capacitance value exceeding a capacitance threshold assigned to the first location; reading a pressure value from the pressure sensor proximal the first location; detecting presence of a second input proximal the first location in response to the pressure value exceeding a pressure threshold; in response to detecting the first input and detecting the second input: merging the first input and the second input into a confirmed touch input; and generating a first touch image representing the first location and the pressure value of the confirmed touch input.
    Type: Grant
    Filed: May 18, 2017
    Date of Patent: November 26, 2019
    Assignee: Sensel, Inc.
    Inventors: Ilya Daniel Rosenberg, John Aaron Zarraga