Patents by Inventor Daniel Rosenman

Daniel Rosenman has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8939960
    Abstract: Methods for easy, atraumatic access to areas of the vasculature that are otherwise difficult to access, using steerable guide catheters constructed with components that are selected to provide optimal navigability, torque transfer, and push ability for a variety of typical percutaneous access routes. The catheter wall thickness in the deflecting segment of the guide catheter is about 1 French (? mm) or less, and includes a slotted deflection tube, and this construction allows a very tight turning radius which in turn enables guide catheter access to regions of the vasculature that are otherwise inaccessible.
    Type: Grant
    Filed: July 22, 2008
    Date of Patent: January 27, 2015
    Assignee: BioCardia, Inc.
    Inventors: Daniel Rosenman, Daniel Kayser, Michael Keleher, Nick Fravala, Richard Cook, Mark Tale, Frank Arko, Simon Stertzer, Peter A. Altman
  • Publication number: 20080287918
    Abstract: Methods for easy, atraumatic access to areas of the vasculature that are otherwise difficult to access, using steerable guide catheters constructed with components that are selected to provide optimal navigability, torque transfer, and push ability for a variety of typical percutaneous access routes. The catheter wall thickness in the deflecting segment of the guide catheter is about 1 French (? mm) or less, and includes a slotted deflection tube, and this construction allows a very tight turning radius which in turn enables guide catheter access to regions of the vasculature that are otherwise inaccessible.
    Type: Application
    Filed: July 22, 2008
    Publication date: November 20, 2008
    Inventors: Daniel Rosenman, Daniel Kayser, Michael Keleher, Nick Fravala, Richard Cook, Mark Tale, Frank Arko, Simon Stertzer, Peter A. Altman
  • Patent number: 7402151
    Abstract: Methods for easy, atraumatic access to areas of the vasculature that are otherwise difficult to access, using steerable guide catheters constructed with components that are selected to provide optimal navigability, torque transfer, and push ability for a variety of typical percutaneous access routes. The catheter wall thickness in the deflecting segment of the guide catheter is about 1 French (? mm) or less, and includes a slotted deflection tube, and this construction allows a very tight turning radius which in turn enables guide catheter access to regions of the vasculature that are otherwise inaccessible.
    Type: Grant
    Filed: December 17, 2004
    Date of Patent: July 22, 2008
    Assignee: BioCardia, Inc.
    Inventors: Daniel Rosenman, Daniel Kayser, Michael Keleher, Nick Fravala, Richard Cook, Mark Tale, Frank Arko, Simon Stertzer, Peter A. Altman
  • Publication number: 20070142774
    Abstract: A catheter for injecting a thermally sensitive gelation material to remote sites within a patient's body by maintaining the thermally sensitive gelation material in a liquid state until it is delivered to a target area within the body.
    Type: Application
    Filed: January 2, 2007
    Publication date: June 21, 2007
    Inventor: Daniel Rosenman
  • Publication number: 20070088244
    Abstract: Catheter-based systems are disclosed for geometrically and temporally controlled deliveries of fluid agents to the heart. Each system includes an elongate catheter shaft, a helical, linear or curved tissue penetration element at the distal end of the shaft, and a handle at the proximal end of the shaft for manipulating the penetrating element through the catheter shaft. The penetrating element and a conductive coil near the shaft distal end provide a pair of electrodes for bipolar sensing of tissue electrical activity. One version of the system includes a fluid lumen through the penetrating element and a contrast fluid lumen open at the catheter shaft distal end. In other versions of the catheter system, the penetrating element contains two fluid lumens. These systems facilitate a variety of tissue mapping and therapeutic agent delivery protocols in which several agents can be simultaneously delivered at a depth within heart tissue, prevented from intermingling until they reach the tissue.
    Type: Application
    Filed: October 18, 2005
    Publication date: April 19, 2007
    Applicant: BioCardia, Inc.
    Inventors: Aaron Miller, Loren Bentley, Daniel Rosenman, Peter Altman
  • Publication number: 20060224111
    Abstract: A system and method for delivering a drug to a target site within a patient's body. The system and method include a steerable guide catheter and a drug delivery catheter. The steerable guide catheter has a first extension tube and a second extension tube that are joined together and form a shoulder. The delivery catheter has a distal docking segment and a proximal docking segment. The guide catheter is inserted into the patient's body, then the delivery catheter is inserted into the guide catheter. The distal docking segment engages the first extension tube, the proximal docking segment engages the second extension tube, and the shoulder limits the distance the delivery catheter can be inserted into the guide catheter. Also, once the delivery catheter is inserted it can be rotated to attach the helical tip to the target site. The guide catheter also includes a steering mechanism as well as a friction mechanism which controls the tension on the steering mechanism.
    Type: Application
    Filed: May 23, 2006
    Publication date: October 5, 2006
    Inventors: Daniel Rosenman, Peter Altman, Brian Hakim, Daniel Kayser, Robert Maston, Douglas McEtchin
  • Publication number: 20060135961
    Abstract: Methods for easy, atraumatic access to areas of the vasculature that are otherwise difficult to access, using steerable guide catheters constructed with components that are selected to provide optimal navigability, torque transfer, and push ability for a variety of typical percutaneous access routes. The catheter wall thickness in the deflecting segment of the guide catheter is about 1 French (? mm) or less, and includes a slotted deflection tube, and this construction allows a very tight turning radius which in turn enables guide catheter access to regions of the vasculature that are otherwise inaccessible.
    Type: Application
    Filed: December 17, 2004
    Publication date: June 22, 2006
    Inventors: Daniel Rosenman, Daniel Kayser, Michael Keleher, Nick Fravala, Richard Cook, Mark Tale, Frank Arko, Simon Stertzer, Peter Altman
  • Publication number: 20060084943
    Abstract: Catheter systems and methods for implanting helical or dart-like implants into the myocardium or other body tissue. The catheter system includes a helix for fixing the distal end of the catheter to the myocardium, an implant held by the helix, mechanisms for driving the fixation helix into the myocardium, and mechanisms for driving the implant into the myocardium, removing the fixation helix and leaving the implant behind. The implant may be coated, filled, or made of a drug or drug eluting compound, or drug delivery matrix of any composition.
    Type: Application
    Filed: December 6, 2005
    Publication date: April 20, 2006
    Inventors: Daniel Rosenman, Peter Altman, Mark Lovich, Michael Schwartz, Aaron Miller