Patents by Inventor Daniel S. Allison

Daniel S. Allison has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20180142038
    Abstract: A new class of antibodies having specificity for glycoproteins are described. The antibodies are shown to bind sensitively and specifically to mannosylated proteins, such as proteins produced by fungi. Assays using these anti-glycoprotein antibodies for monitoring the presence of glycoproteins in a sample are provided. Such methods can be used to monitor methods for production and/or purification of desired polypeptides, which may be used to modify process parameters to modify (e.g., decrease or increase) the amount of glycosylated polypeptide produced and/or present in the purified product. Also provided are methods of using the subject antibodies for detecting the level of expression and secretion of a polypeptide, and methods of using the subject antibodies to purify or deplete a glycoprotein from a sample. In exemplary embodiments, the desired polypeptide may be a multi-subunit protein, such as an antibody, which may be produced in a yeast, such as Pichia pastoris.
    Type: Application
    Filed: January 15, 2016
    Publication date: May 24, 2018
    Applicant: ALDER BIOPHARMACEUTICALS, INC. a/b/a ALDERBIO HOLDINGS LLC
    Inventors: Pamela BROWN, Geoffrey F. LEE, Benjamin DUTZAR, Jenny A. MULLIGAN, Daniel S. ALLISON, Ethan W. OJALA, Amarjeet SINGH
  • Publication number: 20170334987
    Abstract: The present invention is directed to antibodies and fragments thereof having binding specificity for ACTH. Another embodiment of this invention relates to the antibodies binding fragments thereof described herein, comprising the sequences of the VH, VL and/or CDR polypeptides described herein, and the polynucleotides encoding them. The invention also contemplates conjugates of anti-ACTH antibodies and binding fragments thereof conjugated to one or more functional or detectable moieties. The invention further contemplates methods of making said anti-ACTH antibodies and binding fragments thereof.
    Type: Application
    Filed: June 5, 2017
    Publication date: November 23, 2017
    Inventors: Andrew Lawrence FELDHAUS, Leon GARCIA-MARTINEZ, Benjamin H. DUTZAR, Daniel S. ALLISON, Katie Olson ANDERSON, Ethan Wayne OJALA, Pei FAN, Charlie KARASEK, Jenny MULLIGAN, Michelle SCALLEY-KIM, Erica STEWART, Jeffrey T.L. SMITH, John LATHAM
  • Publication number: 20170298115
    Abstract: The present invention is directed to antibodies and antigen binding fragments thereof having binding specificity for PACAP. The antibodies and antigen binding fragments thereof comprise the sequences of the VH, VL, and CDR polypeptides described herein, and the polynucleotides encoding them. Antibodies and antigen binding fragments described herein bind to and/or compete for binding to the same linear or conformational epitope(s) on human PACAP as an anti-PACAP antibody. The invention contemplates conjugates of anti-PACAP antibodies and binding fragments thereof conjugated to one or more functional or detectable moieties. Methods of making said anti-PACAP antibodies and antigen binding fragments thereof are also contemplated.
    Type: Application
    Filed: April 14, 2017
    Publication date: October 19, 2017
    Inventors: Maria-Cristina LOOMIS, Leon F. GARCIA-MARTINEZ, Benjamin H. DUTZAR, Daniel S. ALLISON, Katherine Lee HENDRIX, Ethan W. OJALA, Pei FAN, Jeffrey T.L. SMITH, John A. LATHAM, Charlie KARASEK, Jenny MULLIGAN, Michelle SCALLEY-KIM, Erica STEWART, Vanessa Lisbeth RUBIN, Jens J. BILLGREN
  • Publication number: 20170298127
    Abstract: The present invention is directed to antibodies and antigen binding fragments thereof having binding specificity for PACAP. The antibodies and antigen binding fragments thereof comprise the sequences of the VH, VL, and CDR polypeptides described herein, and the polynucleotides encoding them. Antibodies and antigen binding fragments described herein bind to and/or compete for binding to the same linear or conformational epitope(s) on human PACAP as an anti-PACAP antibody. The invention contemplates conjugates of anti-PACAP antibodies and binding fragments thereof conjugated to one or more functional or detectable moieties. Methods of making said anti-PACAP antibodies and antigen binding fragments thereof are also contemplated.
    Type: Application
    Filed: April 14, 2017
    Publication date: October 19, 2017
    Inventors: Maria-Cristina LOOMIS, Leon Garcia-Martinez, Benjamin H. Dutzar, Daniel S. Allison, Katherine Lee Hendrix, Ethan W. Ojala, Pei Fan, Jeffrey T.L. Smith, John A. Latham, Charlie Karasek, Jenny Mulligan, Michelle Scalley-Kim, Erica Stewart, Vanessa Lisbeth Rubin, Jens J. Billgren
  • Patent number: 9777065
    Abstract: The present invention relates generally to anti-FZD10 antibodies and to methods of using anti-FZD10 antibodies. In particular, the anti-FZD10 antibodies described herein are useful for altering one or more of survival, replication, differentiation and epithelial-to-mesenchymal cell transition of embryonic stem cells and/or for the treatment of diseases, such as a variety of cancers, associated with expression of FZD10, including as stand-alone therapies and in combination therapies with other agents.
    Type: Grant
    Filed: July 1, 2015
    Date of Patent: October 3, 2017
    Assignee: Omeros Corporation
    Inventors: W. Jason Cummings, Munehisa Yabuki, John B. Leppard, Christi L. Wood, Nancy Maizels, Daniel S. Allison, Larry W. Tjoelker
  • Patent number: 9688754
    Abstract: The present invention is directed to antibodies and fragments thereof having binding specificity for ACTH. Another embodiment of this invention relates to the antibodies binding fragments thereof described herein, comprising the sequences of the VH, VL and/or CDR polypeptides described herein, and the polynucleotides encoding them. The invention also contemplates conjugates of anti-ACTH antibodies and binding fragments thereof conjugated to one or more functional or detectable moieties. The invention further contemplates methods of making said anti-ACTH antibodies and binding fragments thereof.
    Type: Grant
    Filed: February 20, 2015
    Date of Patent: June 27, 2017
    Assignee: ALDER BIOPHARMACEUTICALS, INC.
    Inventors: Andrew Lawrence Feldhaus, Leon Garcia-Martinez, Benjamin H. Dutzar, Daniel S. Allison, Katie Olson Anderson, Ethan Wayne Ojala, Pei Fan, Charlie Karasek, Jenny Mulligan, Michelle Scalley-Kim, Erica Stewart, Jeffrey T. L. Smith, John Latham
  • Patent number: 9677070
    Abstract: The disclosure relates generally to the targeting of genes to, and their integration into, an immunoglobulin (antibody) heavy chain locus. In particular, the methods described herein contemplate replacing the single rearranged heavy chain V, D, and J genes of a B cell lymphoma such as DT40 with independently rearranged VH-D-JH genes of chicken, in a system for generating immunoglobulin diversity. Also contemplated is replacement of the chicken VH-D-JH with rearranged VH-D-JH genes of other vertebrates including human in a system for generating immunoglobulin diversity, with the exception of any substitution disclosed and claimed in PCT application WO 2009/029315 A2. Also described is construction of a diverse chicken immunoglobulin heavy chain VDJ library in DT40 by homologous gene replacement of the single endogenous rearranged VDJ gene with a chicken VDJ repertoire using the described targeting vectors.
    Type: Grant
    Filed: March 13, 2013
    Date of Patent: June 13, 2017
    Assignees: Omeros Corporation, University of Washington Through Its Center for Commercialization
    Inventors: Daniel S. Allison, W. Jason Cummings, John B. Leppard, Nancy Maizels, Larry W. Tjoelker, Christi L. Wood, Munehisa Yabuki
  • Publication number: 20170137500
    Abstract: Processes for producing and purifying recombinant proteins are disclosed. In particular, the present disclosure provides processes of producing and purifying multi-subunit proteins expressed in yeast or filamentous fungal cells. The production and/or purification of such proteins are monitored for impurities, preferably using lectin binding assays, such that one or more process parameters may be adjusted to maximize the amount of desired recombinant protein and minimize the amount of glycosylated impurities. The processes can also be monitored for other undesired product-associated impurities, such as aggregates and nucleic acids. In exemplary embodiments, the recombinant proteins are multi-subunit proteins, such as antibodies, the host cell is a yeast, such as Pichia pastoris, and the glycosylated impurity is a glycovariant of the desired recombinant polypeptide, such as an N-linked and/or O-linked glycovariant.
    Type: Application
    Filed: October 21, 2016
    Publication date: May 18, 2017
    Inventors: Daniel S. ALLISON, Steven D. Davin, Hoa Binh Do, Leon F. Garcia-Martinez, Geoffrey F. Lee, Ethan W. Ojala, Mark Young, John A. Latham
  • Publication number: 20160376363
    Abstract: This invention relates to methods of screening for anti-PACAP antibodies, or anti-PACAP receptor antibodies, and antigen binding fragments thereof, for potential use in treating or preventing PACAP-associated photophobia or light aversion, and therapeutic compositions containing and methods of using anti-PACAP antibodies, or anti-PACAP receptor antibodies, and antigen binding fragments thereof.
    Type: Application
    Filed: April 15, 2016
    Publication date: December 29, 2016
    Inventors: Adisa KUBURAS, Bianca MASON, Levi P. SOWERS, Andrew F. RUSSO, Maria-Cristina LOOMIS, Leon F. GARCIA-MARTINEZ, Benjamin H. DUTZAR, Daniel S. ALLISON, Lee HENDRICKS, Ethan W. OJALA, Pei FAN, Jeffrey T.L. SMITH, John A. LATHAM, Charlie KARASEK, Jenny MULLIGAN, Michelle SCALLEY-KIM, Erica STEWART, Vanessa Lisbeth RUBIN, Jens J. BILLGREN
  • Publication number: 20160362488
    Abstract: The present invention is directed to antagonistic antibodies and antigen binding fragments thereof having binding specificity for PACAP. These antibodies inhibit, block or neutralize at least one biological effect associated with PACAP, e.g., vasodilation. In exemplary embodiments these antibodies and antigen binding fragments thereof may comprise specific VH, VL, and CDR polypeptides described herein. In some embodiments these antibodies and antigen binding fragments thereof bind to and/or compete for binding to specific epitope(s) on human PACAP. The invention is further directed to using these antagonistic anti-PACAP antibodies, and binding fragments thereof, for the diagnosis, assessment, and treatment of diseases and disorders associated with PACAP and conditions where antagonism of PACAP-related activities, such as vasodilation, mast cell degranulation, and/or neuronal activation, are therapeutically beneficial, e.g., headache and migraine indications.
    Type: Application
    Filed: April 15, 2016
    Publication date: December 15, 2016
    Inventors: Maria-Cristina LOOMIS, Leon F. Garcia-Martinez, Benjamin H. Dutzar, Daniel S. Allison, Lee Hendricks, Ethan W. Ojala, Pei Fan, Jeffrey T.L. Smith, John A. Latham, Charlie Karasek, Jenny Mulligan, Michelle Scalley-Kim, Erica Stewart, Vanessa Lisbeth Rubin, Jens J. Billgren
  • Publication number: 20160361441
    Abstract: This invention relates to methods of screening for anti-PACAP antibodies, or anti-PACAP receptor antibodies, and antigen binding fragments thereof, for potential use in treating or preventing PACAP-associated photophobia or light aversion, and therapeutic compositions containing and methods of using anti-PACAP antibodies, or anti-PACAP receptor antibodies, and antigen binding fragments thereof.
    Type: Application
    Filed: April 15, 2016
    Publication date: December 15, 2016
    Inventors: Adisa KUBURAS, Bianca MASON, Levi P. SOWERS, Andrew F. RUSSO, Maria-Cristina LOOMIS, Leon F. GARCIA-MARTINEZ, Benjamin H. DUTZAR, Daniel S. ALLISON, Lee HENDRICKS, Ethan W. OJALA, Pei FAN, Jeffrey T.L. SMITH, John A. LATHAM, Charlie KARASEK, Jenny MULLIGAN, Michelle SCALLEY-KIM, Erica STEWART, Vanessa Lisbeth RUBIN, Jens J. BILLGREN
  • Patent number: 9518082
    Abstract: Processes for producing and purifying recombinant proteins are disclosed. In particular, the present disclosure provides processes of producing and purifying multi-subunit proteins expressed in yeast or filamentous fungal cells. The production and/or purification of such proteins are monitored for impurities, preferably using lectin binding assays, such that one or more process parameters may be adjusted to maximize the amount of desired recombinant protein and minimize the amount of glycosylated impurities. The processes can also be monitored for other undesired product-associated impurities, such as aggregates and nucleic acids. In exemplary embodiments, the recombinant proteins are multi-subunit proteins, such as antibodies, the host cell is a yeast, such as Pichia pastoris, and the glycosylated impurity is a glycovariant of the desired recombinant polypeptide, such as an N-linked and/or O-linked glycovariant.
    Type: Grant
    Filed: March 17, 2014
    Date of Patent: December 13, 2016
    Assignee: ALDERBIO HOLDINGS LLC
    Inventors: Daniel S. Allison, Steven D. Davin, Hoa Binh Do, Leon F. Garcia-Martinez, Geoffrey F. Lee, Ethan W. Ojala, Mark Young, John A. Latham
  • Publication number: 20160333107
    Abstract: The present invention relates generally to anti-FZD10 antibodies and to methods of using anti-FZD10 antibodies. In particular, the anti-FZD10 antibodies described herein are useful for altering one or more of survival, replication, differentiation and epithelial-to-mesenchymal cell transition of embryonic stem cells and/or for the treatment of diseases, such as a variety of cancers, associated with expression of FZD10, including as stand-alone therapies and in combination therapies with other agents.
    Type: Application
    Filed: July 1, 2015
    Publication date: November 17, 2016
    Inventors: W. Jason Cummings, Munehisa Yabuki, John B. Leppard, Christi L. Wood, Nancy Maizels, Daniel S. Allison, Larry W. Tjoelker
  • Publication number: 20160304604
    Abstract: The present invention is directed to antagonistic antibodies and antigen binding fragments thereof having binding specificity for PACAP. These antibodies inhibit, block or neutralize at least one biological effect associated with PACAP, e.g., vasodilation. In exemplary embodiments these antibodies and antigen binding fragments thereof may comprise specific VH, VL, and CDR polypeptides described herein. In some embodiments these antibodies and antigen binding fragments thereof bind to and/or compete for binding to specific epitope(s) on human PACAP. The invention is further directed to using these antagonistic anti-PACAP antibodies, and binding fragments thereof, for the diagnosis, assessment, and treatment of diseases and disorders associated with PACAP and conditions where antagonism of PACAP-related activities, such as vasodilation, mast cell degranulation, and/or neuronal activation, are therapeutically beneficial, e.g., headache and migraine indications.
    Type: Application
    Filed: April 15, 2016
    Publication date: October 20, 2016
    Inventors: Maria-Cristina LOOMIS, Leon F. Garcia-Martinez, Benjamin H. Dutzar, Daniel S. Allison, Lee Hendricks, Ethan W. Ojala, Pei Fan, Jeffrey T.L. Smith, John A. Latham, Charlie Karasek, Jenny Mulligan, Michelle Scalley-Kim, Erica Stewart, Vanessa Lisbeth Rubin, Jens J. Billgren
  • Publication number: 20160215049
    Abstract: The present invention is directed to antibodies and fragments thereof having binding specificity for ACTH. Embodiments of this invention relate to the binding fragments of antibodies described herein, comprising the sequences of the VH, VL and/or CDR polypeptides described herein, and the polynucleotides encoding them. The invention also contemplates anti-ACTH antibodies and binding fragments thereof conjugated to one or more functional or detectable moieties. The invention further contemplates methods of making said anti-ACTH antibodies and binding fragments thereof.
    Type: Application
    Filed: December 18, 2015
    Publication date: July 28, 2016
    Inventors: Andrew Lawrence Feldhaus, Leon F. Garcia-Martinez, Benjamin H. Dutzar, Daniel S. Allison, Katie Olson Anderson, Ethan Wayne Ojala, Pei Fan, Charlie Karasek, Jenny A. Mulligan, Danielle Marie Mitchell, Patricia Dianne McNeill, Michelle L. Scalley-Kim, Erica Stewart, Jeffrey T.L. Smith, John Latham
  • Patent number: 9346888
    Abstract: The present invention relates generally to anti-FN14 antibodies. In particular, the anti-FN14 antibodies described herein are useful for the treatment of diseases, such as a variety of cancers, associated with expression of FN14.
    Type: Grant
    Filed: November 14, 2013
    Date of Patent: May 24, 2016
    Assignee: Omeros Corporation
    Inventors: John Benjamin Leppard, Christi L. Wood, W. Jason Cummings, Munehisa Yabuki, Nancy Maizels, Daniel S. Allison, Larry W. Tjoelker
  • Publication number: 20160033504
    Abstract: Methods of identifying antigen-specific antibody-secreting and antibody-forming cells, such as antigen-specific B cells, and methods for cloning the antigen-specific antibody sequences of the antibody produced by these cells are provided. In particular, the methods include enriching B cells for antigen-specific B cells, culturing the antigen-specific B cells to generate clonal B cell populations, detecting clonal B cells that produce a single antigen-specific antibody, optionally screening the clonal B cell populations for functional activity, staining and sorting the cells to isolate the antigen-specific B cells, sequencing the nucleic acids encoding the antigen-specific antibody sequences, expressing the sequences to produce an antibody, isolating the antibody and screening the antibody for antigen recognition. The methods provide improved enrichment and selection of antigen-specific antibody-secreting and antibody-forming cells, which enhances recovery of antigen-specific antibodies.
    Type: Application
    Filed: March 18, 2014
    Publication date: February 4, 2016
    Inventors: Daniel S. Allison, Benjamin H. Dutzar, Leon F. Garcia-Martinez, Katie Anderson, Ethan W. Ojala, John A. Latham, Jens Billgren, Anne Elisabeth Carvalho Jensen
  • Publication number: 20150259414
    Abstract: The present invention is directed to antibodies and fragments thereof having binding specificity for ACTH. Another embodiment of this invention relates to the antibodies binding fragments thereof described herein, comprising the sequences of the VH, VL and/or CDR polypeptides described herein, and the polynucleotides encoding them. The invention also contemplates conjugates of anti-ACTH antibodies and binding fragments thereof conjugated to one or more functional or detectable moieties. The invention further contemplates methods of making said anti-ACTH antibodies and binding fragments thereof.
    Type: Application
    Filed: February 20, 2015
    Publication date: September 17, 2015
    Inventors: Andrew Lawrence FELDHAUS, Leon GARCIA-MARTINEZ, Benjamin H. DUTZAR, Daniel S. ALLISON, Katie Olson ANDERSON, Ethan Wayne OJALA, Pei FAN, Charlie KARASEK, Jenny MULLIGAN, Michelle SCALLEY-KIM, Erica STEWART, Jeffrey T.L. SMITH, John LATHAM
  • Patent number: 9102724
    Abstract: The present invention relates generally to anti-FZD10 antibodies and to methods of using anti-FZD10 antibodies. In particular, the anti-FZD10 antibodies described herein are useful for altering one or more of survival, replication, differentiation and epithelial-to-mesenchymal cell transition of embryonic stem cells and/or for the treatment of diseases, such as a variety of cancers, associated with expression of FZD10, including as stand-alone therapies and in combination therapies with other agents.
    Type: Grant
    Filed: August 9, 2012
    Date of Patent: August 11, 2015
    Assignee: Omeros Corporation
    Inventors: W. Jason Cummings, Munehisa Yabuki, John B. Leppard, Christi L. Wood, Nancy Maizels, Daniel S. Allison, Larry W. Tjoelker
  • Publication number: 20140288272
    Abstract: Processes for producing and purifying recombinant proteins are disclosed. In particular, the present disclosure provides processes of producing and purifying multi-subunit proteins expressed in yeast or filamentous fungal cells. The production and/or purification of such proteins are monitored for impurities, preferably using lectin binding assays, such that one or more process parameters may be adjusted to maximize the amount of desired recombinant protein and minimize the amount of glycosylated impurities. The processes can also be monitored for other undesired product-associated impurities, such as aggregates and nucleic acids. In exemplary embodiments, the recombinant proteins are multi-subunit proteins, such as antibodies, the host cell is a yeast, such as Pichia pastoris, and the glycosylated impurity is a glycovariant of the desired recombinant polypeptide, such as an N-linked and/or O-linked glycovariant.
    Type: Application
    Filed: March 17, 2014
    Publication date: September 25, 2014
    Applicant: ALDERBIO HOLDINGS LLC
    Inventors: Daniel S. ALLISON, Steven D. DAVIN, Hoa Binh DO, Leon F. GARCIA-MARTINEZ, Geoffrey F. LEE, Ethan W. OJALA, Mark YOUNG, John A. LATHAM