Patents by Inventor Daniel S. Goldberger

Daniel S. Goldberger has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8795183
    Abstract: Described are embodiments including methods and devices for venting a handpiece of a medical device. These embodiments provide a vent for the handpiece. A porous membrane is positioned over an opening of the vent to allow gas, including steam, to enter and escape from the handpiece and prevent liquids from entering the handpiece. Other embodiments include methods and devices for holding an ultrasonic driver assembly within a handpiece and preventing the ultrasonic driver assembly from rotating within the handpiece. These embodiments include positioning the ultrasonic driver assembly such that the ultrasonic driver assembly is held in place at a node of the ultrasonic driver assembly and an anti-rotation mechanism is also located at the node.
    Type: Grant
    Filed: December 10, 2010
    Date of Patent: August 5, 2014
    Assignee: Sound Surgical Technologies LLC
    Inventors: Wayne A. Siebrecht, David J. Wesley, David B. Mogill, Daniel S. Goldberger
  • Publication number: 20110196266
    Abstract: Described are embodiments including methods and devices for venting a handpiece of a medical device. These embodiments provide a vent for the handpiece. A porous membrane is positioned over an opening of the vent to allow gas, including steam, to enter and escape from the handpiece and prevent liquids from entering the handpiece. Other embodiments include methods and devices for holding an ultrasonic driver assembly within a handpiece and preventing the ultrasonic driver assembly from rotating within the handpiece. These embodiments include positioning the ultrasonic driver assembly such that the ultrasonic driver assembly is held in place at a node of the ultrasonic driver assembly and an anti-rotation mechanism is also located at the node.
    Type: Application
    Filed: December 10, 2010
    Publication date: August 11, 2011
    Applicant: South Surgical Technologies LLC
    Inventors: Wayne A. Siebrecht, David J. Wesley, David B. Mogill, Daniel S. Goldberger
  • Patent number: 7593108
    Abstract: A method determines an analyte concentration in a sample. The sample includes the analyte and a substance. The method includes providing absorption data of the sample. The method further includes providing reference absorption data of the substance. The method further includes calculating a substance contribution of the absorption data. The method further includes subtracting the substance contribution from the absorption data, thereby providing corrected absorption data substantially free of a contribution from the substance.
    Type: Grant
    Filed: August 20, 2007
    Date of Patent: September 22, 2009
    Assignee: OptiScan Biomedical Corporation
    Inventors: Bernhard B. Sterling, James R. Braig, Daniel S. Goldberger, Philip C. Hartstein, Robert D. Gaffney
  • Publication number: 20080212071
    Abstract: A method determines an analyte concentration in a sample. The sample includes the analyte and a substance. The method includes providing absorption data of the sample. The method further includes providing reference absorption data of the substance. The method further includes calculating a substance contribution of the absorption data. The method further includes subtracting the substance contribution from the absorption data, thereby providing corrected absorption data substantially free of a contribution from the substance.
    Type: Application
    Filed: August 20, 2007
    Publication date: September 4, 2008
    Applicant: OptiScan Biomedical Corporation
    Inventors: Bernhard B. Sterling, James R. Braig, Daniel S. Goldberger, Philp C. Hartstein, Robert D. Gaffney
  • Patent number: 7271912
    Abstract: A method determines an analyte concentration in a sample. The sample includes the analyte and a substance. The method includes providing absorption data of the sample. The method further includes providing reference absorption data of the substance. The method further includes calculating a substance contribution of the absorption data. The method further includes subtracting the substance contribution from the absorption data, thereby providing corrected absorption data substantially free of a contribution from the substance.
    Type: Grant
    Filed: April 15, 2004
    Date of Patent: September 18, 2007
    Assignee: OptiScan Biomedical Corporation
    Inventors: Bernhard B. Sterling, James R. Braig, Daniel S. Goldberger, Philip C. Hartstein, Robert D. Gaffney
  • Patent number: 7122154
    Abstract: A method and infrared sensing device for determining the concentration of alveolar alcohol in a breath sample exhaled by a subject into an infrared sensing device. The presence of alcohol from the upper respiratory tract of the subject is detected by continuously monitoring alcohol and carbon dioxide, normalizing alcohol values with respect to carbon dioxide, calculating a difference between normalized alcohol concentration and carbon dioxide concentration over time, integrating (summing) the difference, and comparing the integrated difference with a threshold. This technique accurately and consistently detects the presence of mouth alcohol in the sample before the presence of carbon dioxide which originates in deep lung breath.
    Type: Grant
    Filed: December 23, 1994
    Date of Patent: October 17, 2006
    Assignee: Intoximeters, Inc.
    Inventors: Glenn C. Forrester, Roger Allen, Roger Herrera, Daniel S. Goldberger, James R. Braig
  • Patent number: 7096124
    Abstract: A method determines an analyte concentration in a sample including the analyte and a substance. The method includes providing an absorption spectrum of the sample. The absorption spectrum has an absorption baseline. The method further includes shifting the absorption spectrum so that the absorption baseline approximately equals a selected absorption value in a selected absorption wavelength range. The method further includes subtracting a substance contribution from the absorption spectrum. Thus, the method provides a corrected absorption spectrum substantially free of a contribution from the substance.
    Type: Grant
    Filed: February 18, 2005
    Date of Patent: August 22, 2006
    Assignee: Optiscan Biomedical Corporation
    Inventors: Bernhard B. Sterling, James R. Braig, Daniel S. Goldberger, Kenneth G. Witte
  • Patent number: 7050157
    Abstract: A reagentless whole-blood analyte detection system that is capable of being deployed near a patient has a source capable of emitting a beam of radiation that includes a spectral band. The whole-blood system also has a detector in an optical path of the beam. The whole-blood system also has a housing that is configured to house the source and the detector. The whole-blood system also has a sample element that is situated in the optical path of the beam. The sample element has a sample cell and a sample cell wall that does not eliminate transmittance of the beam of radiation in the spectral band.
    Type: Grant
    Filed: July 19, 2002
    Date of Patent: May 23, 2006
    Assignee: OptiScan Biomedical Corp.
    Inventors: James R. Braig, Peter Rule, Robert D. Gaffney, Philip C. Hartstein, Julian M. Cortella, Kenneth I. Li, Bernhard B. Sterling, Peng Zheng, W. Dale Hall, Kenneth G. Witte, Mark D. Agostino, Daniel S. Goldberger
  • Patent number: 7009180
    Abstract: A method uses spectroscopy to determine an analyte concentration in a sample. The method includes producing an absorbance spectrum of the sample. The method further includes shifting the absorbance spectrum to zero in a wavelength region. The method further includes subtracting a water or other substance contribution from the absorbance spectrum.
    Type: Grant
    Filed: December 12, 2002
    Date of Patent: March 7, 2006
    Assignee: Optiscan Biomedical Corp.
    Inventors: Bernhard B. Sterling, James R. Braig, Daniel S. Goldberger, Philip C. Hartstein, Robert D. Gaffney
  • Patent number: 7006857
    Abstract: A method of determining the analyte concentration of a test sample is described. A temperature gradient is introduced in the test sample and infrared radiation detectors measure radiation at selected analyte absorbance peak and reference wavelengths. Reference and analytical signals are detected. In the presence of the selected analyte, parameter differences between reference and analytical signals are detectable. These parameter differences, having a relationship to analyte concentration, are measured, correlated, and processed to determine analyte concentration in the test sample. Accuracy is enhanced by inducing a periodically modulated temperature gradient in the test sample. The analytical and reference signals may be measured continuously and the parameter difference integrated over the measurement period to determine analyte concentration.
    Type: Grant
    Filed: April 28, 2003
    Date of Patent: February 28, 2006
    Assignee: OptiScan Biomedical Corporation
    Inventors: James R. Braig, Charles E. Kramer, Bernhard B. Sterling, Daniel S. Goldberger, Peng Zheng, Arthur M. Shulenberger, Rick Trebino, Richard A. King, Casper W. Barnes
  • Patent number: 6959211
    Abstract: A device and method are provided for use with a noninvasive optical measurement system, such as a thermal gradient spectrometer, for improved determination of analyte concentrations within living tissue. In one embodiment, a wearable window is secured to a patient's forearm thereby isolating a measurement site on the patient's skin for determination of blood glucose levels. The wearable window effectively replaces a window of the spectrometer, and thus forms an interface between the patient's skin and a thermal mass window of the spectrometer. When the spectrometer must be temporarily removed from the patient's skin, such as to allow the patient mobility, the wearable window is left secured to the forearm so as to maintain a consistent measurement site on the skin. When the spectrometer is later reattached to the patient, the wearable window will again form an interface between the spectrometer and the same location of skin as before.
    Type: Grant
    Filed: August 6, 2002
    Date of Patent: October 25, 2005
    Assignee: OptiScan Biomedical Corp.
    Inventors: Peter Rule, James R. Braig, Daniel S. Goldberger, Julian M. Cortella, Heidi M. Smith, Roger O. Herrera, Kenneth G. Witte, Philip C. Hartstein, Mark D. Agostino
  • Patent number: 6958809
    Abstract: A reagentless whole-blood analyte detection system that is capable of being deployed near a patient has a source capable of emitting a beam of radiation that includes a spectral band. The whole-blood system also has a detector in an optical path of the beam. The whole-blood system also has a housing that is configured to house the source and the detector. The whole-blood system also has a sample element that is situated in the optical path of the beam. The sample element has a sample cell and a sample cell wall that does not eliminate transmittance of the beam of radiation in the spectral band.
    Type: Grant
    Filed: January 21, 2002
    Date of Patent: October 25, 2005
    Assignee: Optiscan Biomedical Corporation
    Inventors: Bernhard B. Sterling, Philip C. Hartstein, Ken I. Li, Mark D. Agostino, David C. Klonoff, Robert D. Gaffney, Jennifer H. Gable, Ken G. Witte, Mike A. Munrow, Daniel S. Goldberger, Julian M. Cortella, James R. Braig, Peter Rule
  • Patent number: 6944486
    Abstract: A method and apparatus of determining the analyte concentration of a test sample is described. A temperature gradient is introduced into the test sample and infrared radiation detectors measure radiation at selected analyte absorbance peak and reference wavelengths. The modulation of the temperature gradient is controlled by a surface temperature modulation. A transfer function is determined that relates the surface temperature modulation to the modulation of the measured infrared radiation. Reference and analytical signals are detected. In the presence of the selected analyte, phase and magnitude differences in the transfer function are detected. These phase and magnitude differences, having a relationship to analyte concentration, are measured, correlated and processed to determine analyte concentration in the sample.
    Type: Grant
    Filed: June 6, 2003
    Date of Patent: September 13, 2005
    Assignee: Optiscan Biomedical Corporation
    Inventors: James R. Braig, Charles E. Kramer, Bernhard B. Sterling, Daniel S. Goldberger, Peng Zheng, Arthur M. Shulenberger, Rick Trembino, Richard A. King, Casper W. Barnes
  • Patent number: 6931328
    Abstract: An analyte concentration monitoring system having network-based communication features which provide a link between an analyte detection system and a centralized computer. The analyte detection system has a processor that calculates analyte concentration in accordance with software executable by the processor. Under certain conditions, the software needs to be updated. Accordingly, when the analyte detection system is connected to the centralized computer, the centralized computer determines whether a software update is needed. If a software update is needed, then the centralized computer conveniently provides the software update to the analyte detection system without intervention from a user.
    Type: Grant
    Filed: November 8, 2002
    Date of Patent: August 16, 2005
    Assignee: OptiScan Biomedical Corp.
    Inventors: James R. Braig, Gary E. Hewett, Michael A. Munrow, Julian M. Cortella, Kamrava Azizi, Daniel S. Goldberger
  • Patent number: 6862534
    Abstract: A method determines an analyte concentration in a sample including the analyte and a substance. The method includes providing an absorption spectrum of the sample. The absorption spectrum has an absorption baseline. The method further includes shifting the absorption spectrum so that the absorption baseline approximately equals a selected absorption value in a selected absorption wavelength range. The method further includes subtracting a substance contribution from the absorption spectrum. Thus, the method provides a corrected absorption spectrum substantially free of a contribution from the substance.
    Type: Grant
    Filed: February 12, 2003
    Date of Patent: March 1, 2005
    Assignee: OptiScan Biomedical Corporation
    Inventors: Bernhard B. Sterling, James R. Braig, Daniel S. Goldberger, Philip C. Hartstein, Robert D. Gaffney
  • Publication number: 20040242975
    Abstract: A device and method are provided for use with a noninvasive optical measurement system, such as a thermal gradient spectrometer, for improved determination of analyte concentrations within living tissue. In one embodiment, a wearable window is secured to a patient's forearm thereby isolating a measurement site on the patient's skin for determination of blood glucose levels. The wearable window effectively replaces a window of the spectrometer, and thus forms an interface between the patient's skin and a thermal mass window of the spectrometer. When the spectrometer must be temporarily removed from the patient's skin, such as to allow the patient mobility, the wearable window is left secured to the forearm so as to maintain a consistent measurement site on the skin. When the spectrometer is later reattached to the patient, the wearable window will again form an interface between the spectrometer and the same location of skin as before.
    Type: Application
    Filed: August 6, 2002
    Publication date: December 2, 2004
    Inventors: Peter Rule, James R. Braig, Daniel S. Goldberger, Julian M. Cortella, Heidi M. Smith, Roger O. Herrera, Kenneth G. Witte, Philip C. Hartstein, Mark D. Agostino
  • Publication number: 20040093167
    Abstract: An analyte concentration monitoring system having network-based communication features which provide a link between an analyte detection system and a centralized computer. The analyte detection system has a processor that calculates analyte concentration in accordance with software executable by the processor. Under certain conditions, the software needs to be updated. Accordingly, when the analyte detection system is connected to the centralized computer, the centralized computer determines whether a software update is needed. If a software update is needed, then the centralized computer conveniently provides the software update to the analyte detection system without intervention from a user.
    Type: Application
    Filed: November 8, 2002
    Publication date: May 13, 2004
    Inventors: James R. Braig, Gary E. Hewett, Michael A. Munrow, Julian M. Cortella, Kamrava Azizi, Daniel S. Goldberger
  • Publication number: 20040087841
    Abstract: A method and apparatus of determining the analyte concentration of a test sample is described. A temperature gradient is introduced into the test sample and infrared radiation detectors measure radiation at selected analyte absorbance peak and reference wavelengths. The modulation of the temperature gradient is controlled by a surface temperature modulation. A transfer function is determined that relates the surface temperature modulation to the modulation of the measured infrared radiation. Reference and analytical signals are detected. In the presence of the selected analyte, phase and magnitude differences in the transfer function are detected. These phase and magnitude differences, having a relationship to analyte concentration, are measured, correlated and processed to determine analyte concentration in the sample.
    Type: Application
    Filed: June 6, 2003
    Publication date: May 6, 2004
    Inventors: James R. Braig, Charles E. Kramer, Bernhard B. Sterling, Daniel S. Goldberger, Peng Zheng, Arthur M. Shulenberger, Rick Trebino, Richard A. King, Casper W. Barnes
  • Publication number: 20040034291
    Abstract: A method of determining the analyte concentration of a test sample is described. A temperature gradient is introduced in the test sample and infrared radiation detectors measure radiation at selected analyte absorbance peak and reference wavelengths. Reference and analytical signals are detected. In the presence of the selected analyte, parameter differences between reference and analytical signals are detectable. These parameter differences, having a relationship to analyte concentration, are measured, correlated, and processed to determine analyte concentration in the test sample. Accuracy is enhanced by inducing a periodically modulated temperature gradient in the test sample. The analytical and reference signals may be measured continuously and the parameter difference integrated over the measurement period to determine analyte concentration.
    Type: Application
    Filed: February 27, 2003
    Publication date: February 19, 2004
    Inventors: James R. Braig, Bernhard B. Sterling, Daniel S. Goldberger, Peng Zheng, Rick Trebino
  • Publication number: 20040019431
    Abstract: A method determines an analyte concentration in a sample including the analyte and a substance. The method includes providing an absorption spectrum of the sample. The absorption spectrum has an absorption baseline. The method further includes shifting the absorption spectrum so that the absorption baseline approximately equals a selected absorption value in a selected absorption wavelength range. The method further includes subtracting a substance contribution from the absorption spectrum. Thus, the method provides a corrected absorption spectrum substantially free of a contribution from the substance.
    Type: Application
    Filed: February 12, 2003
    Publication date: January 29, 2004
    Inventors: Bernhard B. Sterling, James R. Braig, Daniel S. Goldberger, Philip C. Hartstein, Robert D. Gaffney