Patents by Inventor Daniel S. Homa

Daniel S. Homa has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9435944
    Abstract: A method, apparatus and system for forming a fiber optic cable is disclosed. A first pattern of a phase mark is formed at a first location in the fiber optic cable. A relational parameter between the fiber optic cable and the phase mask is changed and a second pattern of the phase mask is formed at a second location in the fiber optic cable. The second pattern is related to the first pattern via the change in the relational parameter between the fiber optic cable and the phase mask. A controller can be used to control the relational parameter.
    Type: Grant
    Filed: October 11, 2011
    Date of Patent: September 6, 2016
    Assignee: BAKER HUGHES INCORPORATED
    Inventors: Daniel S. Homa, Brooks A. Childers
  • Publication number: 20160209587
    Abstract: An optical fiber seal includes: an annular layer bonded to and in contact with an outer glass layer of a length of an optical fiber; and a glass sealing layer bonded to an outer surface of the annular layer and configured to withstand conditions in a downhole environment, the glass sealing layer configured to hermetically seal the length of the optical fiber.
    Type: Application
    Filed: March 28, 2016
    Publication date: July 21, 2016
    Applicant: Baker Hughes Incorporated
    Inventors: Malcolm S. Laing, Daniel S. Homa, Robert M. Harman
  • Publication number: 20160170675
    Abstract: A fiber with a superconducting core and a glassy cladding with or without holes, voids or pores. The cladding voids, holes, pores and/or passageways may be used to carry a medium such as liquid helium to cool the superconducting material to its transition temperature. The cooling medium can be injected via a pressure drop between the open ends of the fiber, i.e. pressure or vacuum.
    Type: Application
    Filed: July 29, 2014
    Publication date: June 16, 2016
    Inventors: Gary R. Pickerell, Daniel S. Homa
  • Patent number: 8984956
    Abstract: A sensing assembly including a fiber for monitoring at least one condition or parameter and a strip formed from a pair of laminae disposed with the fiber. The laminae are arranged parallel to each other and engaged longitudinally along the fiber for enabling the strip to secure the fiber in place. A method of monitoring a parameter or condition with a sensing assembly is also included.
    Type: Grant
    Filed: October 13, 2011
    Date of Patent: March 24, 2015
    Assignee: Baker Huges Incorporated
    Inventors: Daniel S. Homa, Robert M. Harman, Malcolm S. Laing, Charles A. Giebner, Christopher H. Lambert
  • Patent number: 8942527
    Abstract: A fiber optic cable for use in a downhole environment is disclosed. The fiber optic cable includes a tube having an interior region; an optical fiber disposed in the interior region of the tube; a gas in the interior region; and a gel in the interior region, wherein the gel is configured to reduce stress on the optical fiber in the presence of the gas at a temperature substantially near the flashpoint of the gel. One or more seals can be used to seal the gel and the inert gas in the interior region. In various aspects, the fiber optic cable can be used in a downhole environment.
    Type: Grant
    Filed: March 22, 2011
    Date of Patent: January 27, 2015
    Assignee: Baker Hughes Incorporated
    Inventors: Daniel S. Homa, Robert M. Harman, Christopher H. Lambert
  • Patent number: 8793102
    Abstract: An apparatus for estimating a property includes a hollow core tube and an input light guide disposed at least partially within hollow core tube. The apparatus also includes a second gap disposed within the hollow core tube and separated from the input light guide by an air gap width. The second gap is formed of a first solid material and has a second gap width. The apparatus also includes a third gap disposed at least partially within the hollow core tube and being further from the input light guide than the second gap. The third gap is formed of a second solid material and has a third gap width.
    Type: Grant
    Filed: May 3, 2010
    Date of Patent: July 29, 2014
    Assignee: Baker Hughes Incorporated
    Inventors: Brooks A. Childers, Robert M Harman, Daniel S. Homa, Lance A. Beckner
  • Publication number: 20140202682
    Abstract: An apparatus for performing a downhole operation includes: a carrier configured to be deployed in a borehole in an earth formation; and an optical fiber assembly disposed at the carrier, the optical fiber assembly including an optical fiber and a polymer material bonded to a length of the optical fiber. A portion of the polymer material has been removed by: disposing a liquid metallic material proximate to the polymer material, the polymer material being bonded to the optical fiber; heating the liquid metallic material to a temperature sufficient to burn the polymer material and de-bond the polymer material from a surface of the optical fiber; and removing the polymer material and liquid metal from the surface of the optical fiber.
    Type: Application
    Filed: September 16, 2013
    Publication date: July 24, 2014
    Applicant: BAKER HUGHES INCORPORATED
    Inventors: Christopher H. Lambert, Robert M. Harman, Daniel S. Homa
  • Patent number: 8681322
    Abstract: A method for estimating a distance includes: generating an optical signal having a wavelength that is within a wavelength range, the optical signal modulated via a modulation signal having a modulation frequency; transmitting the modulated optical signal from a light source into the optical fiber, the optical fiber in contact with a moveable strain inducing element located at the position along the optical fiber, the optical fiber including a plurality of sensing locations configured to reflect light within the wavelength range when under strain from the strain inducing element and transmit light within the wavelength range when not under strain from the strain inducing element; receiving a reflected signal including light reflected from at least one of the sensing locations; demodulating the reflected signal with a reference signal to generate reflected signal data; and determining the distance to the position along the optical fiber based on the reflected signal data.
    Type: Grant
    Filed: October 12, 2011
    Date of Patent: March 25, 2014
    Assignee: Baker Hughes Incorporated
    Inventors: Alexander M. Barry, Roger Glen Duncan, Brooks A. Childers, Robert M. Harman, Daniel S. Homa, Ajit Balagopal, Philip Robin Couch
  • Patent number: 8638444
    Abstract: A method, system and apparatus for obtaining a parameter of interest relating to a wellbore is disclosed. A fiber optic cable having a plurality of sensors is disposed in the wellbore, wherein the plurality of sensors have reflectivity values configured to provide improved signal-to-noise ratio compared to signal-to-noise ratio of a plurality of sensors having substantially same reflectivity values. Light is propagated into the fiber optic cable from a light source and signals are received at a detector from the plurality of sensors in response to interaction of the propagated light with the plurality of sensors. A processor may be used to obtain the parameter of interest from the received signals. The fiber optic cable may be coupled to a member in the wellbore, wherein the parameter of interest is related to the member.
    Type: Grant
    Filed: January 11, 2011
    Date of Patent: January 28, 2014
    Assignee: Baker Hughes Incorporated
    Inventors: Roger Glen Duncan, Brooks A. Childers, Daniel S. Homa
  • Publication number: 20130311095
    Abstract: An apparatus for estimating a property includes a hollow core tube and an input light guide disposed at least partially within hollow core tube. The apparatus also includes a second gap disposed within the hollow core tube and separated from the input light guide by an air gap width. The second gap is formed of a first solid material and has a second gap width. The apparatus also includes a third gap disposed at least partially within the hollow core tube and being further from the input light guide than the second gap. The third gap is formed of a second solid material and has a third gap width.
    Type: Application
    Filed: July 25, 2013
    Publication date: November 21, 2013
    Applicant: BAKER HUGHES INCORPORATED
    Inventors: Brooks A. Childers, Robert M. Harman, Daniel S. Homa, Lance A. Beckner
  • Patent number: 8558994
    Abstract: An apparatus for estimating a property, the apparatus includes: a hollow core tube having a first opening and a second opening; a first optical waveguide disposed within the first opening; and a second optical waveguide disposed within the second opening and spaced a distance from the first optical waveguide, the distance being related to the property; wherein a portion of at least one of the optical waveguides within the tube is perimetrically isolated from the tube.
    Type: Grant
    Filed: December 2, 2010
    Date of Patent: October 15, 2013
    Assignee: Baker Hughes Incorporated
    Inventors: Daniel S. Homa, Robert M. Harman, Brooks A. Childers, Alexander M. Barry, Brian S. Lucas
  • Patent number: 8557052
    Abstract: A method of removing a polymer material from an optical fiber assembly includes: disposing a liquid metallic material proximate to the polymer material, the polymer material being bonded to the optical fiber; heating the liquid metallic material to a temperature sufficient to burn the polymer material and de-bond the polymer material from a surface of the optical fiber; and removing the polymer material and liquid metal from the surface of the optical fiber.
    Type: Grant
    Filed: August 3, 2011
    Date of Patent: October 15, 2013
    Assignee: Baker Hughes Incorporated
    Inventors: Christopher H. Lambert, Robert M. Harman, Daniel S. Homa
  • Publication number: 20130091956
    Abstract: A sensing assembly including a fiber for monitoring at least one condition or parameter and a strip formed from a pair of laminae disposed with the fiber. The laminae are arranged parallel to each other and engaged longitudinally along the fiber for enabling the strip to secure the fiber in place. A method of monitoring a parameter or condition with a sensing assembly is also included.
    Type: Application
    Filed: October 13, 2011
    Publication date: April 18, 2013
    Applicant: BAKER HUGHES INCORPORATED
    Inventors: Daniel S. Homa, Robert M. Harman, Malcolm S. Laing, Charles A. Giebner, Christopher H. Lambert
  • Publication number: 20130094808
    Abstract: A method of producing a coated FBG optical fiber involves coating the optical fiber prior to writing the Bragg grating. A system for producing the coated FBG optical fibers includes a high temperature furnace from which to draw the fiber, a coating applicator that may be a carbon coating applicator, a cooling station, and a grating writing station.
    Type: Application
    Filed: October 14, 2011
    Publication date: April 18, 2013
    Applicant: BAKER HUGHES INCORPORATED
    Inventors: Daniel S. Homa, Christopher H. Lambert, Ajit Balagopal, Robert M. Harman
  • Publication number: 20130094011
    Abstract: A method for estimating a distance includes: generating an optical signal having a wavelength that is within a wavelength range, the optical signal modulated via a modulation signal having a modulation frequency; transmitting the modulated optical signal from a light source into the optical fiber, the optical fiber in contact with a moveable strain inducing element located at the position along the optical fiber, the optical fiber including a plurality of sensing locations configured to reflect light within the wavelength range when under strain from the strain inducing element and transmit light within the wavelength range when not under strain from the strain inducing element; receiving a reflected signal including light reflected from at least one of the sensing locations; demodulating the reflected signal with a reference signal to generate reflected signal data; and determining the distance to the position along the optical fiber based on the reflected signal data.
    Type: Application
    Filed: October 12, 2011
    Publication date: April 18, 2013
    Applicant: BAKER HUGHES INCORPORATED
    Inventors: Alexander M. Barry, Roger Glen Duncan, Brooks A. Childers, Robert M. Harman, Daniel S. Homa, Ajit Balagopal, Philip Robin Couch
  • Publication number: 20130087937
    Abstract: A method, apparatus and system for forming a fiber optic cable is disclosed. A first pattern of a phase mark is formed at a first location in the fiber optic cable. A relational parameter between the fiber optic cable and the phase mask is changed and a second pattern of the phase mask is formed at a second location in the fiber optic cable. The second pattern is related to the first pattern via the change in the relational parameter between the fiber optic cable and the phase mask. A controller can be used to control the relational parameter.
    Type: Application
    Filed: October 11, 2011
    Publication date: April 11, 2013
    Applicant: BAKER HUGHES INCORPORATED
    Inventors: Daniel S. Homa, Brooks A. Childers
  • Publication number: 20130034324
    Abstract: An optical fiber sensing apparatus includes: a substrate configured to deform in response to an environmental parameter; an optical fiber sensor including a core having at least one measurement location disposed therein and a protective coating surrounding the optical fiber sensor, the protective coating made from a polyimide material; and an adhesive configured to adhere the optical fiber sensor to the substrate, the adhesive made from the polyimide material.
    Type: Application
    Filed: August 3, 2011
    Publication date: February 7, 2013
    Applicant: BAKER HUGHES INCORPORATED
    Inventors: Malcolm S. Laing, Daniel S. Homa, Robert M. Harman, Christopher H. Lambert
  • Publication number: 20130032177
    Abstract: A method of removing a polymer material from an optical fiber assembly includes: disposing a liquid metallic material proximate to the polymer material, the polymer material being bonded to the optical fiber; heating the liquid metallic material to a temperature sufficient to burn the polymer material and de-bond the polymer material from a surface of the optical fiber; and removing the polymer material and liquid metal from the surface of the optical fiber.
    Type: Application
    Filed: August 3, 2011
    Publication date: February 7, 2013
    Applicant: BAKER HUGHES INCORPORATED
    Inventors: Christopher H. Lambert, Robert M. Harman, Daniel S. Homa
  • Publication number: 20120314988
    Abstract: An apparatus for estimating a shape, the apparatus including: an optical fiber configured to conform to the shape and having a first core offset from a centerline of the optical fiber, the first core having an optical characteristic configured to change due to a change in shape of the optical fiber wherein a change in the optical characteristic is used to estimate the shape. A method for estimating a shape is also disclosed.
    Type: Application
    Filed: August 20, 2012
    Publication date: December 13, 2012
    Applicant: BAKER HUGHES INCORPORATED
    Inventors: Brooks A. Childers, Daniel S. Homa
  • Publication number: 20120243881
    Abstract: A fiber optic cable for use in a downhole environment is disclosed. The fiber optic cable includes a tube having an interior region; an optical fiber disposed in the interior region of the tube; a gas in the interior region; and a gel in the interior region, wherein the gel is configured to reduce stress on the optical fiber in the presence of the gas at a temperature substantially near the flashpoint of the gel. One or more seals can be used to seal the gel and the inert gas in the interior region. In various aspects, the fiber optic cable can be used in a downhole environment.
    Type: Application
    Filed: March 22, 2011
    Publication date: September 27, 2012
    Applicant: BAKER HUGHES INCORPORATED
    Inventors: Daniel S. Homa, Robert M. Harman, Christopher H. Lambert