Patents by Inventor Daniel S. Ng

Daniel S. Ng has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10418899
    Abstract: A switch circuit includes a first MOS transistor and a second MOS transistor of a same conductivity type connected in parallel between a first terminal and a second terminal. The first and second MOS transistors have respective gate terminals coupled to the control terminal to receive a control signal to turn the switch circuit on or off where the control signal transitions from a first voltage level to a second voltage level at a slow rate of change. The first MOS transistor has a first threshold voltage and the second MOS transistor has a second threshold voltage where the first threshold voltage is less than the second threshold voltage.
    Type: Grant
    Filed: April 14, 2014
    Date of Patent: September 17, 2019
    Assignee: Alpha and Omega Semiconductor Incorporated
    Inventors: Sik K. Lui, Daniel S. Ng, Xiaobin Wang
  • Patent number: 9281416
    Abstract: A Schottky diode includes first and second trenches formed in a semiconductor layer where the first and second trenches are lined with a thin dielectric layer and filled partially with a trench conductor layer with the remaining portion being filled with a first dielectric layer. Well regions are formed spaced-apart in a top portion of the semiconductor layer between the first and second trenches. A Schottky metal layer is formed on a top surface of the semiconductor layer between the first and second trenches. The Schottky diode is formed with the Schottky metal layer as the anode and the semiconductor layer between the first and second trenches as the cathode. The trench conductor layer in the first and second trenches is electrically connected to the anode of the Schottky diode. In one embodiment, the Schottky diode is formed integrated with a trench field effect transistor on the same semiconductor substrate.
    Type: Grant
    Filed: September 15, 2014
    Date of Patent: March 8, 2016
    Assignee: Alpha and Omega Semiconductor Incorporated
    Inventors: Daniel Calafut, Yi Su, Jongoh Kim, Hong Chang, Hamza Yilmaz, Daniel S. Ng
  • Publication number: 20150295495
    Abstract: A switch circuit includes a first MOS transistor and a second MOS transistor of a same conductivity type connected in parallel between a first terminal and a second terminal. The first and second MOS transistors have respective gate terminals coupled to the control terminal to receive a control signal to turn the switch circuit on or off where the control signal transitions from a first voltage level to a second voltage level at a slow rate of change.
    Type: Application
    Filed: April 14, 2014
    Publication date: October 15, 2015
    Applicant: Alpha and Omega Semiconductor Incorporated
    Inventors: Sik K. Lui, Daniel S. Ng, Xiaobin Wang
  • Publication number: 20150001616
    Abstract: A Schottky diode includes first and second trenches formed in a semiconductor layer where the first and second trenches are lined with a thin dielectric layer and filled partially with a trench conductor layer with the remaining portion being filled with a first dielectric layer. Well regions are formed spaced-apart in a top portion of the semiconductor layer between the first and second trenches. A Schottky metal layer is formed on a top surface of the semiconductor layer between the first and second trenches. The Schottky diode is formed with the Schottky metal layer as the anode and the semiconductor layer between the first and second trenches as the cathode. The trench conductor layer in the first and second trenches is electrically connected to the anode of the Schottky diode. In one embodiment, the Schottky diode is formed integrated with a trench field effect transistor on the same semiconductor substrate.
    Type: Application
    Filed: September 15, 2014
    Publication date: January 1, 2015
    Inventors: Daniel Calafut, Yi Su, Jongoh Kim, Hong Chang, Hamza Yilmaz, Daniel S. Ng
  • Patent number: 8865540
    Abstract: A method for forming a Schottky diode including forming first and second trenches in a semiconductor layer, forming a thin dielectric layer lining sidewalls of the first and second trenches; forming a trench conductor layer in the first and second trenches where the trench conductor layer fills a portion of each of the first and second trenches and being the only one trench conductor layer in the first and second trenches; forming a first dielectric layer in the first and second trenches to fill the remaining portions of the first and second trenches; and forming a Schottky metal layer on a top surface of the lightly doped semiconductor layer between the first trench and the second trench to form a Schottky junction. The Schottky diode is formed with the Schottky metal layer as the anode and the lightly doped semiconductor layer between the first and second trenches as the cathode.
    Type: Grant
    Filed: November 18, 2013
    Date of Patent: October 21, 2014
    Assignee: Alpha and Omega Semiconductor Incorporated
    Inventors: Daniel Calafut, Yi Su, Jongoh Kim, Hong Chang, Hamza Yilmaz, Daniel S. Ng
  • Publication number: 20140073098
    Abstract: A method for forming a Schottky diode including forming first and second trenches in a semiconductor layer, forming a thin dielectric layer lining sidewalls of the first and second trenches; forming a trench conductor layer in the first and second trenches where the trench conductor layer fills a portion of each of the first and second trenches and being the only one trench conductor layer in the first and second trenches; forming a first dielectric layer in the first and second trenches to fill the remaining portions of the first and second trenches; and forming a Schottky metal layer on a top surface of the lightly doped semiconductor layer between the first trench and the second trench to form a Schottky junction. The Schottky diode is formed with the Schottky metal layer as the anode and the lightly doped semiconductor layer between the first and second trenches as the cathode.
    Type: Application
    Filed: November 18, 2013
    Publication date: March 13, 2014
    Applicant: Alpha and Omega Semiconductor Incorporated
    Inventors: Daniel Calafut, Yi Su, Jongoh Kim, Hong Chang, Hamza Yilmaz, Daniel S. Ng
  • Patent number: 8610235
    Abstract: A Schottky diode includes a semiconductor layer formed on a semiconductor substrate; first and second trenches formed in the semiconductor layer where the first and second trenches are lined with a thin dielectric layer and being filled partially with a trench conductor layer and remaining portions of the first and second trenches are filled with a first dielectric layer; and a Schottky metal layer formed on a top surface of the semiconductor layer between the first trench and the second trench. The Schottky diode is formed with the Schottky metal layer as the anode and the semiconductor layer between the first and second trenches as the cathode. The trench conductor layer in each of the first and second trenches is electrically connected to the anode of the Schottky diode. In one embodiment, the Schottky diode is formed integrated with a trench field effect transistor on the same semiconductor substrate.
    Type: Grant
    Filed: September 22, 2011
    Date of Patent: December 17, 2013
    Assignee: Alpha and Omega Semiconductor Incorporated
    Inventors: Daniel Calafut, Yi Su, Jongoh Kim, Hong Chang, Hamza Yilmaz, Daniel S. Ng
  • Publication number: 20130075808
    Abstract: A Schottky diode includes a semiconductor layer formed on a semiconductor substrate; first and second trenches formed in the semiconductor layer where the first and second trenches are lined with a thin dielectric layer and being filled partially with a trench conductor layer and remaining portions of the first and second trenches are filled with a first dielectric layer; and a Schottky metal layer formed on a top surface of the semiconductor layer between the first trench and the second trench. The Schottky diode is formed with the Schottky metal layer as the anode and the semiconductor layer between the first and second trenches as the cathode. The trench conductor layer in each of the first and second trenches is electrically connected to the anode of the Schottky diode. In one embodiment, the Schottky diode is formed integrated with a trench field effect transistor on the same semiconductor substrate.
    Type: Application
    Filed: September 22, 2011
    Publication date: March 28, 2013
    Applicant: ALPHA AND OMEGA SEMICONDUCTOR INC.
    Inventors: Daniel Calafut, Yi Su, Jongoh Kim, Hong Chang, Hamza Yilmaz, Daniel S. Ng
  • Patent number: 8053298
    Abstract: This invention discloses an improved semiconductor power device includes a plurality of power transistor cells wherein each cell further includes a planar gate padded by a gate oxide layer disposed on top of a drift layer constituting an upper layer of a semiconductor substrate wherein the planar gate further constituting a split gate including a gap opened in a gate layer whereby the a total surface area of the gate is reduced. The transistor cell further includes a JFET (junction field effect transistor) diffusion region disposed in the drift layer below the gap of the gate layer wherein the JFET diffusion region having a higher dopant concentration than the drift region for reducing a channel resistance of the semiconductor power device.
    Type: Grant
    Filed: March 16, 2009
    Date of Patent: November 8, 2011
    Assignee: Alpha & Omega Semiconductor Ltd.
    Inventors: Anup Bhalla, Francois Hebert, Daniel S. Ng
  • Publication number: 20090181503
    Abstract: This invention discloses an improved semiconductor power device includes a plurality of power transistor cells wherein each cell further includes a planar gate padded by a gate oxide layer disposed on top of a drift layer constituting an upper layer of a semiconductor substrate wherein the planar gate further constituting a split gate including a gap opened in a gate layer whereby the a total surface area of the gate is reduced. The transistor cell further includes a JFET (junction field effect transistor) diffusion region disposed in the drift layer below the gap of the gate layer wherein the JFET diffusion region having a higher dopant concentration than the drift region for reducing a channel resistance of the semiconductor power device.
    Type: Application
    Filed: March 16, 2009
    Publication date: July 16, 2009
    Inventors: Anup Bhalla, Francois Hebert, Daniel S. Ng
  • Patent number: 7504676
    Abstract: This invention discloses an improved semiconductor power device includes a plurality of power transistor cells wherein each cell further includes a planar gate padded by a gate oxide layer disposed on top of a drift layer constituting an upper layer of a semiconductor substrate wherein the planar gate further constituting a split gate including a gap opened in a gate layer whereby the a total surface area of the gate is reduced. The transistor cell further includes a JFET (junction field effect transistor) diffusion region disposed in the drift layer below the gap of the gate layer wherein the JFET diffusion region having a higher dopant concentration than the drift region for reducing a channel resistance of the semiconductor power device.
    Type: Grant
    Filed: May 31, 2006
    Date of Patent: March 17, 2009
    Assignee: Alpha & Omega Semiconductor, Ltd.
    Inventors: Anup Bhalla, Francois Hebert, Daniel S. Ng
  • Publication number: 20070278571
    Abstract: This invention discloses an improved semiconductor power device includes a plurality of power transistor cells wherein each cell further includes a planar gate padded by a gate oxide layer disposed on top of a drift layer constituting an upper layer of a semiconductor substrate wherein the planar gate further constituting a split gate including a gap opened in a gate layer whereby the a total surface area of the gate is reduced. The transistor cell further includes a JFET (junction field effect transistor) diffusion region disposed in the drift layer below the gap of the gate layer wherein the JFET diffusion region having a higher dopant concentration than the drift region for reducing a channel resistance of the semiconductor power device.
    Type: Application
    Filed: May 31, 2006
    Publication date: December 6, 2007
    Inventors: Anup Bhalla, Francois Hebert, Daniel S. Ng