Patents by Inventor Daniel Schneberk

Daniel Schneberk has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10466183
    Abstract: A system for characterizing the material of an object scanned via a dual-energy computed tomography scanner is provided. The system generates photoelectric and Compton sinograms based on a photoelectric-Compton decomposition of low-energy and high-energy sinograms generated from the scan and based on a scanner spectral response model. The system generates a Compton volume with Compton attenuation coefficients from the Compton sinogram and a photoelectric volume with photoelectric attenuation coefficients from the photoelectric sinogram. The system generates an estimated effective atomic number for a voxel and an estimated electron density for the voxel from the Compton attenuation coefficient and photoelectric coefficient for the voxel and scanner-specific parameters. The system then characterizes the material within the voxel based on the estimated effective atomic number and estimated electron density for the voxel.
    Type: Grant
    Filed: October 31, 2016
    Date of Patent: November 5, 2019
    Assignee: Lawrence Livermore National Security, LLC
    Inventors: Isaac Seetho, Maurice B. Aufderheide, Stephen G. Azevedo, William D. Brown, Kyle Champley, Daniel Schneberk, G. Patrick Roberson, Jeffrey S. Kallman, Harry E. Martz, Jr., Jerel A. Smith
  • Publication number: 20180120241
    Abstract: A system for characterizing the material of an object scanned via a dual-energy computed tomography scanner is provided. The system generates photoelectric and Compton sinograms based on a photoelectric-Compton decomposition of low-energy and high-energy sinograms generated from the scan and based on a scanner spectral response model. The system generates a Compton volume with Compton attenuation coefficients from the Compton sinogram and a photoelectric volume with photoelectric attenuation coefficients from the photoelectric sinogram. The system generates an estimated effective atomic number for a voxel and an estimated electron density for the voxel from the Compton attenuation coefficient and photoelectric coefficient for the voxel and scanner-specific parameters. The system then characterizes the material within the voxel based on the estimated effective atomic number and estimated electron density for the voxel.
    Type: Application
    Filed: October 31, 2016
    Publication date: May 3, 2018
    Inventors: Isaac Seetho, Maurice B. Aufderheide, Stephen G. Azevedo, William D. Brown, Kyle Champley, Daniel Schneberk, G. Patrick Roberson, Jeffrey S. Kallman, Harry E. Martz, JR., Jerel A. Smith
  • Patent number: 5764721
    Abstract: An apparatus and method for optimizing computer tomography images obtained from any of a number of different standard computer tomography scanning devices. The apparatus and method incorporate computer-aided design data for an object being scanned into a system for establishing nominal scanning beam intensities and nominal scanning detector sensitivities that ultimately compensate for non-anomalous variations in beam path characteristics. Particularly adapted for optimizing scan images on objects with large length-to-width ratios, the present invention identifies significant deviations from some normal baseline beam path in advance of a scan and modifies beam intensity and detector sensitivity to bring the projected beam into a nominal range. Thereafter, deviations from this referenced nominal beam can be better identified as anomalies within the object being scanned, that are of interest.
    Type: Grant
    Filed: January 8, 1997
    Date of Patent: June 9, 1998
    Assignee: Southwest Research Institute
    Inventors: Glenn M. Light, Daniel Schneberk