Patents by Inventor Daniel Schnitzler

Daniel Schnitzler has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11773004
    Abstract: The present invention relates to a laser cutting technology for cutting and separating thin substrates of transparent materials, for example to cutting of display glass compositions mainly used for production of Thin Film Transistors (TFT) devices. The described laser process can be used to make straight cuts, for example at a speed of >0.25 m/sec, to cut sharp radii outer corners (<1 mm), and to create arbitrary curved shapes including forming interior holes and slots. A method of laser processing an alkaline earth boro-aluminosilicate glass composite workpiece includes focusing a pulsed laser beam into a focal line. The pulsed laser produces pulse bursts with 5-20 pulses per pulse burst and pulse burst energy of 300-600 micro Joules per burst. The focal line is directed into the glass composite workpiece, generating induced absorption within the material.
    Type: Grant
    Filed: March 23, 2016
    Date of Patent: October 3, 2023
    Assignee: CORNING INCORPORATED
    Inventors: Thomas Hackert, Xinghua Li, Sasha Marjanovic, Moussa N'Gom, David Andrew Pastel, Garrett Andrew Piech, Daniel Schnitzler, Robert Stephen Wagner, James Joseph Watkins
  • Patent number: 10377658
    Abstract: A workpiece may be laser processed by a method that may include forming a contour line in the workpiece, and directing an infrared laser beam onto the workpiece along or near the contour line to separate the workpiece along the contour line. The contour line may include defects in the workpiece. The infrared laser beam may have a beam profile such that a greater distribution of cumulated energy from the infrared laser beam is located in areas adjacent to the contour line than directly on the contour line.
    Type: Grant
    Filed: July 24, 2017
    Date of Patent: August 13, 2019
    Assignee: Corning Incorporated
    Inventors: Daniel Schnitzler, Helmut Schillinger
  • Publication number: 20180057390
    Abstract: The present invention relates to a laser cutting technology for cutting and separating thin substrates of transparent materials, for example to cutting of display glass compositions mainly used for production of Thin Film Transistors (TFT) devices. The described laser process can be used to make straight cuts, for example at a speed of >0.25 m/sec, to cut sharp radii outer corners (<1 mm), and to create arbitrary curved shapes including forming interior holes and slots. A method of laser processing an alkaline earth boro-aluminosilicate glass composite workpiece includes focusing a pulsed laser beam into a focal line. The pulsed laser produces pulse bursts with 5-20 pulses per pulse burst and pulse burst energy of 300-600 micro Joules per burst. The focal line is directed into the glass composite workpiece, generating induced absorption within the material.
    Type: Application
    Filed: March 23, 2016
    Publication date: March 1, 2018
    Inventors: Thomas Hackert, Xinghua Li, Sasha Marjanovic, Moussa N'Gom, David Andrew Pastel, Garrett Andrew Piech, Daniel Schnitzler, Robert Stephen Wagner, James Joseph Watkins
  • Publication number: 20180029919
    Abstract: A workpiece may be laser processed by a method that may include forming a contour line in the workpiece, and directing an infrared laser beam onto the workpiece along or near the contour line to separate the workpiece along the contour line. The contour line may include defects in the workpiece. The infrared laser beam may have a beam profile such that a greater distribution of cumulated energy from the infrared laser beam is located in areas adjacent to the contour line than directly on the contour line.
    Type: Application
    Filed: July 24, 2017
    Publication date: February 1, 2018
    Inventors: Daniel Schnitzler, Helmut Schillinger