Patents by Inventor Daniel Scott Colvin

Daniel Scott Colvin has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10821963
    Abstract: A control strategy is provided for a hybrid vehicle that will increase drivability during low or decreasing driver demands. Coordination between shifting the transmission and stopping or (non-demand) starting of the engine can increase drivability. The vehicle includes a motor/generator with one side selectively coupled to the engine and another side selectively coupled to the transmission. The control strategy acts when an engine start or stop is requested while driver demand is decreasing and a shift of the transmission is demanded. To inhibit these events from proceeding simultaneously, the control strategy delays the engine from starting or stopping until the transmission has finished shifting, or vice versa.
    Type: Grant
    Filed: July 13, 2017
    Date of Patent: November 3, 2020
    Assignee: Ford Global Technologies, LLC
    Inventors: Bernard D. Nefcy, Daniel Scott Colvin, Matthew John Shelton, Mark Steven Yamazaki, Marvin Paul Kraska
  • Patent number: 10487891
    Abstract: A vehicle includes a clutch to couple a motor and transmission, and a controller that, in response to a regenerative braking request and a temperature being within a first range, partially capacitizes the clutch for regenerative torque transfer therethrough with slip, and in response to another regenerative braking request and the temperature being within a second range less than the first, fully capacitizes the clutch prior to regenerative torque transfer therethough to preclude slip.
    Type: Grant
    Filed: February 4, 2016
    Date of Patent: November 26, 2019
    Assignee: Ford Global Technologies, LLC
    Inventors: Walter Joseph Ortmann, Bernard D. Nefcy, Todd McCullough, Christopher Alan Lear, Daniel Scott Colvin
  • Patent number: 10369888
    Abstract: A vehicle includes a powertrain, an electric machine, a battery, and a controller. The powertrain is configured to transfer motive power to the electric machine to charge the battery during regenerative braking. The controller programmed to, in response to a decreasing demanded powertrain output torque, adjust a regenerative braking torque limit based on an anti-jerk torque schedule, generate an actual regenerative braking torque based on system constraints, and limit the actual regenerative braking torque to the regenerative braking torque limit.
    Type: Grant
    Filed: March 9, 2016
    Date of Patent: August 6, 2019
    Assignee: Ford Global Technologies, LLC
    Inventors: Ming Lang Kuang, Bernard D. Nefcy, Yanan Zhao, Daniel Scott Colvin
  • Patent number: 10336316
    Abstract: A vehicle includes an electric machine, battery, torque converter bypass clutch, drive wheel, and controller. The electric machine is configured to recharge the battery via regenerative braking. The torque converter bypass clutch is disposed between the electric machine and the drive wheel. The controller is programmed to, in response to a negative drive wheel torque command during a regenerative braking event, adjust a closed-state torque capacity of the torque converter bypass clutch based on the torque command.
    Type: Grant
    Filed: November 3, 2016
    Date of Patent: July 2, 2019
    Assignee: Ford Global Technologies, LLC
    Inventors: Ming Lang Kuang, Bernard D. Nefcy, Yanan Zhao, Daniel Scott Colvin
  • Patent number: 10308239
    Abstract: A hybrid vehicle powertrain includes an internal combustion engine, first and second electric machines, traction wheels, and an output shaft having meshing gears configured to establish a final drive ratio between the output shaft and the traction wheels. The powertrain additionally includes a first mechanical linkage and a second mechanical linkage. The first mechanical linkage is configured to selectively transmit engine torque to the fraction wheels and selectively transmit electric machine torque to the traction wheels. The second mechanical linkage is configured to selectively transmit engine torque to the traction wheels. When transmitting engine torque to the wheels, the second mechanical linkage defines a fixed overdrive speed relationship between the engine and the fraction wheels.
    Type: Grant
    Filed: October 1, 2014
    Date of Patent: June 4, 2019
    Assignee: Ford Global Technologies, LLC
    Inventors: Walter Joseph Ortmann, Bernard D. Nefcy, Daniel Scott Colvin
  • Patent number: 10239515
    Abstract: A vehicle includes an engine and electric machine connected to a planetary gear, a one-way clutch, and a controller. The one-way clutch transfers torque from the planetary gear to an overdrive gear. The controller, in response to a condition requiring disengagement of the one-way clutch, increases a torque of the electric machine based on a torque command for the electric machine and the torque transferred from the planetary gear to the overdrive gear.
    Type: Grant
    Filed: January 16, 2015
    Date of Patent: March 26, 2019
    Assignee: Ford Global Technologies, LLC
    Inventors: Bernard D. Nefcy, Daniel Scott Colvin, Luke Ottaway, Walter Joseph Ortmann
  • Patent number: 10179582
    Abstract: A vehicle transmission system having a combustion engine, an electric motor and a transmission includes a first clutch operatively connected between the engine and the motor and a one way clutch. The one way clutch is connected in parallel with the first clutch that permits the engine to increase speed with the clutch disengaged until the engine speed matches the motor speed. The engine provides positive torque through the one way clutch to the motor and transmission upon matching the motor speed. The first clutch and the one way clutch may be a hybrid rocker one way clutch.
    Type: Grant
    Filed: August 13, 2015
    Date of Patent: January 15, 2019
    Assignee: FORD GLOBAL TECHNOLOGIES, LLC
    Inventors: Walter Joseph Ortmann, Daniel Scott Colvin, Bernard D. Nefcy
  • Patent number: 10150468
    Abstract: A shift strategy is provided for a hybrid electric vehicle to cause a speed of a motor to approach a target motor speed to increase fuel economy for an engine operating in a hybrid drive mode. A controller shifts the transmission according to a magnitude of a driver torque demand, the current rotor or impeller speed, and whether the motor is consuming or producing current. The controller shifts the transmission according to one shift schedule when the motor is motoring, and according to another shift schedule when the motor is generating power.
    Type: Grant
    Filed: April 25, 2017
    Date of Patent: December 11, 2018
    Assignee: Ford Global Technologies, LLC
    Inventors: Xiaoyong Wang, Wei Liang, Ming Lang Kuang, Rajit Johri, Daniel Scott Colvin, Mark Steven Yamazaki
  • Patent number: 10106148
    Abstract: A vehicle includes an engine having a crankshaft, a transmission, an electric machine, and at least one controller. The transmission includes a torque converter having a turbine fixed to a turbine shaft that is driveably connected to driven wheels of the vehicle. The torque converter includes an impeller and a bypass clutch configured to selectively lock the impeller and the turbine relative to each other. The electric machine includes a rotor selectively coupled to the crankshaft via a disconnect clutch and fixed to the impeller. The at least one controller is configured to generate a first torque command for the electric machine that defines a magnitude equal to driver-demanded torque while the bypass clutch is locked. The controller is further configured to, in response to a reduction in fluid pressure supplied to the bypass clutch, generate a second torque command for the electric machine that defines a magnitude equal to driver-demanded torque plus impeller inertia torque.
    Type: Grant
    Filed: August 19, 2016
    Date of Patent: October 23, 2018
    Assignee: Ford Global Technologies, LLC
    Inventors: Jason Meyer, Rajit Johri, Mark Steven Yamazaki, Bernard D. Nefcy, Jeffrey Allen Doering, Scott James Thompson, Daniel Scott Colvin, Scott Steadmon Thompson
  • Patent number: 10000203
    Abstract: A vehicle includes and an engine, a motor, a transmission, and a controller. The transmission is configured is to receive power from the engine and the motor. The transmission is also configured to shift between gears based on a shift schedule. The controller is programmed to, in response to only the motor providing power to the transmission, adjust the shift schedule to narrow an operating speed range of the motor such that the motor speed maintains a peak range of an available motor power output.
    Type: Grant
    Filed: January 13, 2016
    Date of Patent: June 19, 2018
    Assignee: Ford Global Technologies, LLC
    Inventors: Andrew E. Burt, Christopher Alan Lear, Bernard D. Nefcy, Daniel Scott Colvin
  • Patent number: 9988036
    Abstract: A vehicle includes an engine, a traction motor, a clutch, and a controller. The clutch selectively couples the traction motor to wheels. The controller, in response to a torque output by the fraction motor achieving a torque limit while operating to partially satisfy a demand for driveline damping and while the clutch is locked, slips the clutch to completely satisfy the demand for driveline damping.
    Type: Grant
    Filed: September 5, 2014
    Date of Patent: June 5, 2018
    Assignee: Ford Global Technologies, LLC
    Inventors: Bernard D. Nefcy, Daniel Scott Colvin, Felix Nedorezov
  • Publication number: 20180118194
    Abstract: A vehicle includes an electric machine, battery, torque converter bypass clutch, drive wheel, and controller. The electric machine is configured to recharge the battery via regenerative braking. The torque converter bypass clutch is disposed between the electric machine and the drive wheel. The controller is programmed to, in response to a negative drive wheel torque command during a regenerative braking event, adjust a closed-state torque capacity of the torque converter bypass clutch based on the torque command.
    Type: Application
    Filed: November 3, 2016
    Publication date: May 3, 2018
    Inventors: Ming Lang KUANG, Bernard D. NEFCY, Yanan ZHAO, Daniel Scott COLVIN
  • Patent number: 9944269
    Abstract: A system and method for controlling a step-ratio transmission gearshift during a regenerative braking event for a hybrid vehicle having an engine selectively coupled to an electric machine and an automatic transmission control transmission input torque based on a measured shift profile and a target shift profile. A torque trim term may be added to the transmission input torque or electric machine output torque in response to a difference between the measured and target shift profiles. The torque trim term may be used to modify the transmission input torque to speed the shift up or shorten the shift time if the measured shift is progressing too slowly. Likewise, the torque trim term may be used to reduce the transmission input torque or electric machine output torque if the shift is progressing too quickly relative to the target shift profile.
    Type: Grant
    Filed: April 14, 2015
    Date of Patent: April 17, 2018
    Assignee: Ford Global Technologies, LLC
    Inventors: Bernard D. Nefcy, Daniel Scott Colvin, Felix Nedorezov, Todd McCullough
  • Publication number: 20180050684
    Abstract: A vehicle includes an engine having a crankshaft, a transmission, an electric machine, and at least one controller. The transmission includes a torque converter having a turbine fixed to a turbine shaft that is driveably connected to driven wheels of the vehicle. The torque converter includes an impeller and a bypass clutch configured to selectively lock the impeller and the turbine relative to each other. The electric machine includes a rotor selectively coupled to the crankshaft via a disconnect clutch and fixed to the impeller. The at least one controller is configured to generate a first torque command for the electric machine that defines a magnitude equal to driver-demanded torque while the bypass clutch is locked. The controller is further configured to, in response to a reduction in fluid pressure supplied to the bypass clutch, generate a second torque command for the electric machine that defines a magnitude equal to driver-demanded torque plus impeller inertia torque.
    Type: Application
    Filed: August 19, 2016
    Publication date: February 22, 2018
    Inventors: Jason MEYER, Rajit JOHRI, Mark Steven YAMAZAKI, Bernard D. NEFCY, Jeffrey Allen DOERING, Scott James THOMPSON, Daniel Scott COLVIN, Scott Steadmon THOMPSON
  • Publication number: 20170305408
    Abstract: A control strategy is provided for a hybrid vehicle that will increase drivability during low or decreasing driver demands. Coordination between shifting the transmission and stopping or (non-demand) starting of the engine can increase drivability. The vehicle includes a motor/generator with one side selectively coupled to the engine and another side selectively coupled to the transmission. The control strategy acts when an engine start or stop is requested while driver demand is decreasing and a shift of the transmission is demanded. To inhibit these events from proceeding simultaneously, the control strategy delays the engine from starting or stopping until the transmission has finished shifting, or vice versa.
    Type: Application
    Filed: July 13, 2017
    Publication date: October 26, 2017
    Inventors: Bernard D. NEFCY, Daniel Scott COLVIN, Matthew John SHELTON, Mark Steven YAMAZAKI, Marvin Paul KRASKA
  • Patent number: 9783188
    Abstract: A vehicle includes a generator, a battery, a transmission, and a controller. The generator is configured to recharge the battery at a maximum power output when a generator speed is above a threshold speed. The transmission is configured to downshift during regenerative braking such that the generator speed is maintained above the threshold speed. The controller is programmed to, in response to a decrease in battery temperature corresponding to a decrease in generator speed required to maintain the maximum power output, decrease the threshold speed.
    Type: Grant
    Filed: January 13, 2016
    Date of Patent: October 10, 2017
    Assignee: Ford Global Technologies, LLC
    Inventors: Daniel Scott Colvin, Christopher Alan Lear, Bernard D. Nefcy, Andrew E. Burt
  • Publication number: 20170259670
    Abstract: A vehicle includes a powertrain, an electric machine, a battery, and a controller. The powertrain is configured to transfer motive power to the electric machine to charge the battery during regenerative braking. The controller programmed to, in response to a decreasing demanded powertrain output torque, adjust a regenerative braking torque limit based on an anti-jerk torque schedule, generate an actual regenerative braking torque based on system constraints, and limit the actual regenerative braking torque to the regenerative braking torque limit.
    Type: Application
    Filed: March 9, 2016
    Publication date: September 14, 2017
    Inventors: Ming Lang KUANG, Bernard D. Nefcy, Yanan ZHAO, Daniel Scott COLVIN
  • Patent number: 9738271
    Abstract: A method for controlling a hybrid electric powertrain includes, in response to a request to increase a powertrain braking force on at least one of a plurality of traction wheels, (i) commanding at least one clutch to increase a gear ratio of a transmission, and (ii) during clutch stroke, commanding an electric machine to act as a generator such that the electric machine applies a braking force to at least one of the traction wheels.
    Type: Grant
    Filed: October 21, 2015
    Date of Patent: August 22, 2017
    Assignee: Ford Global Technologies, LLC
    Inventors: Walter Joseph Ortmann, Daniel Scott Colvin, Marvin Paul Kraska
  • Patent number: 9731706
    Abstract: A control strategy is provided for a hybrid vehicle that will increase drivability during low or decreasing driver demands. Coordination between shifting the transmission and stopping or (non-demand) starting of the engine can increase drivability. The vehicle includes a motor/generator with one side selectively coupled to the engine and another side selectively coupled to the transmission. The control strategy acts when an engine start or stop is requested while driver demand is decreasing and a shift of the transmission is demanded. To inhibit these events from proceeding simultaneously, the control strategy delays the engine from starting or stopping until the transmission has finished shifting, or vice versa.
    Type: Grant
    Filed: March 24, 2015
    Date of Patent: August 15, 2017
    Assignee: Ford Global Technologies, LLC
    Inventors: Bernard D. Nefcy, Daniel Scott Colvin, Matthew John Shelton, Mark Steven Yamazaki, Marvin Paul Kraska
  • Publication number: 20170225675
    Abstract: A shift strategy is provided for a hybrid electric vehicle to cause a speed of a motor to approach a target motor speed to increase fuel economy for an engine operating in a hybrid drive mode. A controller shifts the transmission according to a magnitude of a driver torque demand, the current rotor or impeller speed, and whether the motor is consuming or producing current. The controller shifts the transmission according to one shift schedule when the motor is motoring, and according to another shift schedule when the motor is generating power.
    Type: Application
    Filed: April 25, 2017
    Publication date: August 10, 2017
    Inventors: Xiaoyong WANG, Wei LIANG, Ming Lang KUANG, Rajit JOHRI, Daniel Scott COLVIN, Mark Steven YAMAZAKI