Patents by Inventor Daniel Scott Homa

Daniel Scott Homa has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20180230049
    Abstract: A method for producing a protected optical fiber with distributed sensors includes heating an optical fiber preform and drawing the heated optical fiber preform to form a drawn optical fiber. The method also includes coating the drawn optical fiber with a carbon coating after the optical fiber is drawn to provide a carbon coated optical fiber and then writing a series of fiber Bragg gratings (FBGs) into the carbon coated optical fiber to provide a carbon coated optical fiber with FBGs. The method further includes coating the carbon coated optical fiber with FBGs with one or more layers of a polymer to provide the protected optical fiber with distributed sensors, wherein the heating, drawing, carbon coating the drawn optical fiber, writing, coating the carbon coated optical fiber are performed in that sequence while the protected optical fiber is being produced.
    Type: Application
    Filed: February 13, 2017
    Publication date: August 16, 2018
    Applicant: Baker Hughes Incorporated
    Inventors: Paul Francis Wysocki, Ajit Balagopal, Christopher Howard Lambert, Daniel Scott Homa
  • Patent number: 8401355
    Abstract: A hydrogen-resistant optical fiber particularly well-suitable for downhole applications comprises a relatively thick pure silica core and a depressed-index cladding layer. Interposed between the depressed-index cladding layer and the core is a relatively thin germanium-doped interface. By maintaining a proper relationship between the pure silica core diameter and the thickness of the germanium-doped interface, a majority (preferably, more than 65%) of the propagating signal can be confined within the pure silica core and, therefore, be protected from hydrogen-induced attenuation problems associated with the presence of germanium (as is common in downhole fiber applications). The hydrogen-resistant fiber of the present invention can be formed to include one or more Bragg gratings within the germanium-doped interface, useful for sensing applications.
    Type: Grant
    Filed: January 12, 2012
    Date of Patent: March 19, 2013
    Assignee: Baker Hughes Incorporated
    Inventors: Daniel Scott Homa, Brooks Childers
  • Patent number: 8265441
    Abstract: A hydrogen-resistant optical fiber particularly well-suitable for downhole applications comprises a relatively thick pure silica core and a depressed-index cladding layer. Interposed between the depressed-index cladding layer and the core is a relatively thin germanium-doped interface. By maintaining a proper relationship between the pure silica core diameter and the thickness of the germanium-doped interface, a majority (preferably, more than 65%) of the propagating signal can be confined within the pure silica core and, therefore, be protected from hydrogen-induced attenuation problems associated with the presence of germanium (as is common in downhole fiber applications). The hydrogen-resistant fiber of the present invention can be formed to include one or more Bragg gratings within the germanium-doped interface, useful for sensing applications.
    Type: Grant
    Filed: May 25, 2007
    Date of Patent: September 11, 2012
    Assignee: Baker Hughes Incorporated
    Inventors: Daniel Scott Homa, Brooks Childers
  • Publication number: 20120175795
    Abstract: A hydrogen-resistant optical fiber particularly well-suitable for downhole applications comprises a relatively thick pure silica core and a depressed-index cladding layer. Interposed between the depressed-index cladding layer and the core is a relatively thin germanium-doped interface. By maintaining a proper relationship between the pure silica core diameter and the thickness of the germanium-doped interface, a majority (preferably, more than 65%) of the propagating signal can be confined within the pure silica core and, therefore, be protected from hydrogen-induced attenuation problems associated with the presence of germanium (as is common in downhole fiber applications). The hydrogen-resistant fiber of the present invention can be formed to include one or more Bragg gratings within the germanium-doped interface, useful for sensing applications.
    Type: Application
    Filed: January 12, 2012
    Publication date: July 12, 2012
    Applicant: BAKER HUGHES INCORPORATED
    Inventors: Daniel Scott Homa, Brooks Childers
  • Publication number: 20110293232
    Abstract: A hydrogen-resistant optical fiber particularly well-suitable for downhole applications comprises a relatively thick pure silica core and a depressed-index cladding layer. Interposed between the depressed-index cladding layer and the core is a relatively thin germanium-doped interface. By maintaining a proper relationship between the pure silica core diameter and the thickness of the germanium-doped interface, a majority (preferably, more than 65%) of the propagating signal can be confined within the pure silica core and, therefore, be protected from hydrogen-induced attenuation problems associated with the presence of germanium (as is common in downhole fiber applications). The hydrogen-resistant fiber of the present invention can be formed to include one or more Bragg gratings within the germanium-doped interface, useful for sensing applications.
    Type: Application
    Filed: May 25, 2007
    Publication date: December 1, 2011
    Inventors: Daniel Scott Homa, Brooks Childers
  • Patent number: 7752870
    Abstract: A method of forming an optical fiber preform using, for example, an MCVD process, is modified to reduce the presence of hydrogen-induced transmission losses in an optical fiber drawn from the preform. A relatively porous, unsintered soot layer is first formed (similar to the initial soot layer commonly associated with the solution-doped process of the prior art) and then subjected to a flow of a metal halide (such as SiCl4) to reduce the presence of excess oxygen. It is imperative that the metal halide treatment occur in the absence of oxygen. Sintering of the treated layer, followed by a conventional collapsing process is then used to form the inventive preform. In accordance with the present invention, both the sintering and collapsing steps are performed in a non-oxygen based ambient. When the drawn fiber is then later exposed to hydrogen, the lack of oxygen thus eliminates the formation of Si—OH and the associated attenuation problems.
    Type: Grant
    Filed: October 16, 2003
    Date of Patent: July 13, 2010
    Assignee: Baker Hughes Incorporated
    Inventor: Daniel Scott Homa
  • Patent number: 7526160
    Abstract: Hydrogen-induced losses in germanium-doped fibers is significantly reduced by increasing the concentration of oxygen in the core region of the glass. The increase in oxygen functions to “heal” the germanium-deficient defects, thus substantially reducing the sites where hydrogen bonding can intrude. Advantageously, the presence of the excess oxygen does not compromise the ability to create UV-induced gratings in the fiber's core area. Indeed, the stability of the glass has been found to increase even further during UV radiation. Thus, an FBG structure suitable for use in harsh, high temperature environments can be formed.
    Type: Grant
    Filed: December 20, 2007
    Date of Patent: April 28, 2009
    Assignee: Baker Hughes Incorporated
    Inventors: Daniel Scott Homa, Justin Crusse
  • Patent number: 6947650
    Abstract: An optical fiber suitable to support single mode optical transmission at longer wavelengths (e.g., 1550 nm) is formed to comprise a pure silica core region and a “down doped” cladding layer. The core region is defined as having a diameter d and the cladding layer is defined has having an outer diameter D. In accordance with the present invention, single mode propagation will be supported when D/d>8.5, and is preferably in the range of 9–10.
    Type: Grant
    Filed: May 6, 2004
    Date of Patent: September 20, 2005
    Assignee: Luna Energy LLC
    Inventor: Daniel Scott Homa
  • Publication number: 20030213268
    Abstract: A method for producing an optical fiber preform is disclosed. The fiber core is solution-doped with a high dopant concentration of an index modifier, preferably aluminum. High aluminum concentrations can be achieved without incorporating phosphorus in the core.
    Type: Application
    Filed: August 6, 2002
    Publication date: November 20, 2003
    Inventor: Daniel Scott Homa