Patents by Inventor Daniel Siraux

Daniel Siraux has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10995168
    Abstract: The present invention relates to a process for the preparation of ethylene polymers using a number of reactors arranged in series comprising the steps in which a) ethylene, a diluent, a catalyst, a co-catalyst and optionally comonomers and hydrogen are introduced into a first reactor, b) polymerization of ethylene and optionally comonomers is carried out in the reaction mixture of said first reactor to make ethylene polymers, c) reaction mixture is discharged from said first reactor, d) said reaction mixture and fresh ethylene and optionally comonomers and hydrogen are introduced into the consecutive reactor to make additional ethylene polymers, e) said reaction mixture is discharged from said consecutive reactor and introduced into the further consecutive reactor, if any, with fresh ethylene and optionally comonomers and hydrogen to make additional ethylene polymers, steps c) and d) are repeated until the last reactor of the series, f) reaction mixture is discharged from last reactor of the series and ethyl
    Type: Grant
    Filed: March 4, 2019
    Date of Patent: May 4, 2021
    Assignee: TOTAL RESEARCH & TECHNOLOGY FELUY
    Inventors: Mieke Dams, Daniel Siraux
  • Publication number: 20190194371
    Abstract: The present invention relates to a process for the preparation of ethylene polymers using a number of reactors arranged in series comprising the steps in which a) ethylene, a diluent, a catalyst, a co-catalyst and optionally comonomers and hydrogen are introduced into a first reactor, b) polymerization of ethylene and optionally comonomers is carried out in the reaction mixture of said first reactor to make ethylene polymers, c) reaction mixture is discharged from said first reactor, d) said reaction mixture and fresh ethylene and optionally comonomers and hydrogen are introduced into the consecutive reactor to make additional ethylene polymers, e) said reaction mixture is discharged from said consecutive reactor and introduced into the further consecutive reactor, if any, with fresh ethylene and optionally comonomers and hydrogen to make additional ethylene polymers, steps c) and d) are repeated until the last reactor of the series, f) reaction mixture is discharged from last reactor of the series and e
    Type: Application
    Filed: March 4, 2019
    Publication date: June 27, 2019
    Inventors: Mieke Dams, Daniel Siraux
  • Patent number: 10259898
    Abstract: The present invention relates to a process for the preparation of ethylene polymers using a number of reactors arranged in series comprising the steps in which a) ethylene, a diluent, a catalyst, a co-catalyst and optionally comonomers and hydrogen are introduced into a first reactor, b) polymerization of ethylene and optionally comonomers is carried out in the reaction mixture of said first reactor to make ethylene polymers, c) reaction mixture is discharged from said first reactor, d) said reaction mixture and fresh ethylene and optionally comonomers and hydrogen are introduced into the consecutive reactor to make additional ethylene polymers, e) said reaction mixture is discharged from said consecutive reactor and introduced into the further consecutive reactor, if any, with fresh ethylene and optionally comonomers and hydrogen to make additional ethylene polymers, steps c) and d) are repeated until the last reactor of the series, f) reaction mixture is discharged from last reactor of the series and ethyl
    Type: Grant
    Filed: August 16, 2016
    Date of Patent: April 16, 2019
    Assignee: TOTAL RESEARCH & TECHNOLOGY FELUY
    Inventors: Mieke Dams, Daniel Siraux
  • Patent number: 9567416
    Abstract: The present invention relates to an apparatus and process for polymerizing olefins. One embodiment comprises polymerizing at least one monomer in a first loop reactor in the presence of a catalyst to produce a first polyolefin fraction. A portion of the first polyolefin fraction is transferred to a second loop reactor, connected in series with the first loop reactor. The process further comprises polymerizing in the second loop reactor at least one monomer in the presence of a catalyst to produce a second polyolefin fraction in addition to the first polyolefin fraction. The combination of the first and second polyolefin fractions can produce a polymer resin fluff having bimodal molecular weight distribution.
    Type: Grant
    Filed: December 22, 2015
    Date of Patent: February 14, 2017
    Assignee: TOTAL RESEARCH & TECHNOLOGY FELUY
    Inventors: Louis Fouarge, Eric Damme, Olivier Miserque, Daniel Siraux, Philippe Bodart, Andre Lewalle, Marc Van der Auwera, Frans Van den Brande, Giacomo Conti, Hugo Vandaele, Mark Verleysen, Carl Van Camp, Etienne Laurent, Philippe Marechal, Marc Moers, Leopold D'Hooghe, Marjan Sillis, Kai Hortman, Pascal Folie, Renaud Oreins
  • Publication number: 20160355621
    Abstract: The present invention relates to a process for the preparation of ethylene polymers using a number of reactors arranged in series comprising the steps in which a) ethylene, a diluent, a catalyst, a co-catalyst and optionally comonomers and hydrogen are introduced into a first reactor, b) polymerization of ethylene and optionally comonomers is carried out in the reaction mixture of said first reactor to make ethylene polymers, c) reaction mixture is discharged from said first reactor, d) said reaction mixture and fresh ethylene and optionally comonomers and hydrogen are introduced into the consecutive reactor to make additional ethylene polymers, e) said reaction mixture is discharged from said consecutive reactor and introduced into the further consecutive reactor, if any, with fresh ethylene and optionally comonomers and hydrogen to make additional ethylene polymers, steps c) and d) are repeated until the last reactor of the series, f) reaction mixture is discharged from last reactor of the series and e
    Type: Application
    Filed: August 16, 2016
    Publication date: December 8, 2016
    Inventors: Mieke Dams, Daniel Siraux
  • Patent number: 9447206
    Abstract: The present invention relates to a process for the preparation of ethylene polymers using a number of reactors arranged in series comprising the steps in which a) ethylene, a diluent, a catalyst, a co-catalyst and optionally comonomers and hydrogen are introduced into a first reactor, b) polymerization of ethylene and optionally comonomers is carried out in the reaction mixture of said first reactor to make ethylene polymers, c) reaction mixture is discharged from said first reactor, d) said reaction mixture and fresh ethylene and optionally comonomers and hydrogen are introduced into the consecutive reactor to make additional ethylene polymers, e) said reaction mixture is discharged from said consecutive reactor and introduced into the further consecutive reactor, if any, with fresh ethylene and optionally comonomers and hydrogen to make additional ethylene polymers, steps c) and d) are repeated until the last reactor of the series, f) reaction mixture is discharged from last reactor of the series and ethyl
    Type: Grant
    Filed: March 29, 2007
    Date of Patent: September 20, 2016
    Assignee: Total Research & Technology Feluy
    Inventors: Mieke Dams, Daniel Siraux
  • Patent number: 9359493
    Abstract: A high-density polyethylene (HDPE) can be adapted for the manufacture of caps and closures. The caps and closures can be used as screw-on caps for carbonated or still drinks. The high-density polyethylene can have a density of at least 940 kg/m3 and of at most 970 kg/m3, and a high load melt index HLMI of at least 35 dg/min and of at most 180 dg/min. The high-density polyethylene can include a first polyethylene fraction and a second polyethylene fraction. The first polyethylene fraction can have a density of at least 920 kg/m3 and of at most 945 kg/m3, and a melt index HL275 of at least 3 dg/min and of at most 12 dg/min. The second polyethylene fraction can have a density of at least 960 kg/m3 and of at most 980 kg/m3.
    Type: Grant
    Filed: September 28, 2012
    Date of Patent: June 7, 2016
    Assignee: Total Research & Technology Feluy
    Inventors: David Ribour, Alain Standaert, Daniel Siraux, Ludovic Horion, Olivier Lhost
  • Patent number: 9340631
    Abstract: A process for preparing a polyethylene resin having a multimodal molecular weight distribution in at least two loop slurry reactors connected in series can include polymerizing ethylene in the presence of at least one supported metallocene catalyst, a diluent, optionally one or more co-monomers, and optionally hydrogen, thereby obtaining the polyethylene resin. The supported metallocene catalyst can have a particle size distribution of a span value lower than 2.5 and a D50 value within the range of from 5 ?m to 20 ?m.
    Type: Grant
    Filed: July 24, 2013
    Date of Patent: May 17, 2016
    Assignee: Total Research & Technology Feluy
    Inventors: Christopher Willocq, Daniel Siraux, Aurélien Vantomme, Olivier Miserque
  • Patent number: 9334346
    Abstract: A process of preparing a polyolefin in a loop reactor in the presence of antifouling agent can include feeding into the loop reactor diluent, monomers, optionally hydrogen, and optionally one or more co-monomers to produce a liquid phase. Antifouling agent and catalyst can be introduced into the loop reactor. The process can include polymerizing the monomers and optional co-monomers to form the polyolefin. The process can be characterized in that a time difference between introduction of the antifouling agent and introduction of the catalyst is at most 3 hours. The process can be characterized in that the catalyst is introduced into a liquid phase when a concentration of the antifouling agent ranges from 0 ppm to less than 0.3 ppm.
    Type: Grant
    Filed: January 22, 2015
    Date of Patent: May 10, 2016
    Assignee: Total Research and Technology Feluy
    Inventors: Daniel Siraux, Daan Dewachter
  • Publication number: 20160108149
    Abstract: The present invention relates to an apparatus and process for polymerizing olefins. One embodiment comprises polymerizing at least one monomer in a first loop reactor in the presence of a catalyst to produce a first polyolefin fraction. A portion of the first polyolefin fraction is transferred to a second loop reactor, connected in series with the first loop reactor. The process further comprises polymerizing in the second loop reactor at least one monomer in the presence of a catalyst to produce a second polyolefin fraction in addition to the first polyolefin fraction. The combination of the first and second polyolefin fractions can produce a polymer resin fluff having bimodal molecular weight distribution.
    Type: Application
    Filed: December 22, 2015
    Publication date: April 21, 2016
    Inventors: Louis Fouarge, Eric Damme, Olivier Miserque, Daniel Siraux, Philippe Bodart, Andre Lewalle, Marc Van der Auwera, Frans Van den Brande, Giacomo Conti, Hugo Vandaele, Mark Verleysen, Carl Van Camp, Etienne Laurent, Philippe Marechal, Marc Moers, Leopold D'Hooghe, Marjan Sillis, Kai Hortman, Pascal Folie, Renaud Oreins
  • Patent number: 9303095
    Abstract: The present invention relates to a process of preparing a polyolefin in a loop reactor by introducing anti-fouling agent in by-pass pipes. Also, the invention relates to the use of anti-fouling agent to prevent blockage by feeding the anti-fouling agent into the by-pass pipes of the loop reactor.
    Type: Grant
    Filed: November 6, 2014
    Date of Patent: April 5, 2016
    Inventors: Daniel Siraux, Daan Dewachter, Louis Fouarge
  • Patent number: 9221921
    Abstract: The present invention relates to an apparatus and process for polymerizing olefins. One embodiment comprises polymerizing at least one monomer in a first loop reactor in the presence of a catalyst to produce a first polyolefin fraction. A portion of the first polyolefin fraction is transferred to a second loop reactor, connected in series with the first loop reactor. The process further comprises polymerizing in the second loop reactor at least one monomer in the presence of a catalyst to produce a second polyolefin fraction in addition to the first polyolefin fraction. The combination of the first and second polyolefin fractions can produce a polymer resin fluff having bimodal molecular weight distribution.
    Type: Grant
    Filed: December 17, 2014
    Date of Patent: December 29, 2015
    Assignee: TOTAL RESEARCH & TECHNOLOGY FELUY
    Inventors: Louis Fouarge, Eric Damme, Olivier Miserque, Daniel Siraux, Philippe Bodart, Andre Lewalle, Marc Van der Auwera, Frans Van den Brande, Giacomo Conti, Hugo Vandaele, Mark Verleysen, Carl Van Camp, Etienne Laurent, Philippe Marechal, Marc Moers, Leopold D'Hooghe, Marjan Sillis, Kai Hortman, Pascal Folie, Renaud Oreins
  • Patent number: 9126179
    Abstract: The invention relates to a process for preparing polyolefin in a loop reactor. The polymer is prepared by polymerizing olefin monomers in the presence of a catalyst to produce a polyolefin slurry while pumping said slurry through said loop reactor by means of a pump. The present process is characterized in that the catalyst is fed in the loop reactor at a distance to the pump. The invention allows production of the polymer with advantageous properties while leading to fewer blockages of the reactor.
    Type: Grant
    Filed: July 28, 2014
    Date of Patent: September 8, 2015
    Assignee: TOTAL RESEARCH & TECHNOLOGY FELUY
    Inventors: Eric Damme, Louis Fouarge, Jerome Bette, Alvaro Fernandez, Aurelien Vantomme, Renaud Oreins, Daniel Siraux
  • Publication number: 20150239999
    Abstract: A process for preparing a polyethylene resin having a multimodal molecular weight distribution in at least two loop slurry reactors connected in series can include polymerizing ethylene in the presence of at least one supported metallocene catalyst, a diluent, optionally one or more co-monomers, and optionally hydrogen, thereby obtaining the polyethylene resin. The supported metallocene catalyst can have a particle size distribution of a span value lower than 2.5 and a D50 value within the range of from 5 ?m to 20 ?m.
    Type: Application
    Filed: July 24, 2013
    Publication date: August 27, 2015
    Inventors: Christopher Willocq, Daniel Siraux, Aurélien Vantomme, Olivier Miserque
  • Patent number: 9109058
    Abstract: The present invention relates to a method for initiating an ethylene polymerization reaction in an ethylene polymerization loop reactor. More particularly, the invention relates to the timing upon which hydrogen is introduced into the ethylene polymerization loop reactor. The catalysts used in the ethylene polymerization reaction according to present invention are preferably metallocene catalysts.
    Type: Grant
    Filed: November 14, 2013
    Date of Patent: August 18, 2015
    Assignee: TOTAL RESEARCH & TECHNOLOGY FELUY
    Inventor: Daniel Siraux
  • Publication number: 20150175720
    Abstract: The present invention relates to an apparatus and process for polymerizing olefins. One embodiment comprises polymerizing at least one monomer in a first loop reactor in the presence of a catalyst to produce a first polyolefin fraction. A portion of the first polyolefin fraction is transferred to a second loop reactor, connected in series with the first loop reactor. The process further comprises polymerizing in the second loop reactor at least one monomer in the presence of a catalyst to produce a second polyolefin fraction in addition to the first polyolefin fraction. The combination of the first and second polyolefin fractions can produce a polymer resin fluff having bimodal molecular weight distribution.
    Type: Application
    Filed: December 17, 2014
    Publication date: June 25, 2015
    Inventors: Louis Fouarge, Eric Damme, Olivier Miserque, Daniel Siraux, Philippe Bodart, Andre Lewalle, Marc Van der Auwera, Frans Van den Brande, Giacomo Conti, Hugo Vandaele, Mark Verleysen, Carl Van Camp, Etienne Laurent, Philippe Marechal, Marc Moers, Leopold D'Hooghe, Marjan Sillis, Kai Hortman, Pascal Folie, Renaud Oreins
  • Publication number: 20150133613
    Abstract: A process of preparing a polyolefin in a loop reactor in the presence of antifouling agent can include feeding into the loop reactor diluent, monomers, optionally hydrogen, and optionally one or more co-monomers to produce a liquid phase. Antifouling agent and catalyst can be introduced into the loop reactor. The process can include polymerizing the monomers and optional co-monomers to form the polyolefin. The process can be characterized in that a time difference between introduction of the antifouling agent and introduction of the catalyst is at most 3 hours. The process can be characterized in that the catalyst is introduced into a liquid phase when a concentration of the antifouling agent ranges from 0 ppm to less than 0.3 ppm.
    Type: Application
    Filed: January 22, 2015
    Publication date: May 14, 2015
    Inventors: Daniel Siraux, Daan Dewachter
  • Patent number: 8987389
    Abstract: The present invention relates to a process of preparing a polyethylene in a loop reactor in the presence of antifouling agent comprising the steps of: a) feeding into said loop reactor diluent, monomers, optionally hydrogen, and optionally one or more co-monomers to produce a liquid phase; b) introducing antifouling agent into said loop reactor, c) introducing a catalyst into the liquid phase to produce a slurry; and d) polymerizing the monomers and optional co-monomers to form the polyethylene, characterized in that the time difference between introduction of the antifouling agent and introduction of the catalyst is at most 3 hours.
    Type: Grant
    Filed: July 29, 2011
    Date of Patent: March 24, 2015
    Assignee: Total Research & Technology Feluy
    Inventors: Daniel Siraux, Daan Dewachter
  • Publication number: 20150065666
    Abstract: The present invention relates to a process of preparing a polyolefin in a loop reactor by introducing anti-fouling agent in by-pass pipes. Also, the invention relates to the use of anti-fouling agent to prevent blockage by feeding the anti-fouling agent into the by-pass pipes of the loop reactor.
    Type: Application
    Filed: November 6, 2014
    Publication date: March 5, 2015
    Inventors: Daniel Siraux, Daan Dewachter, Louis Fouarge
  • Patent number: 8956573
    Abstract: The present invention relates to an apparatus and process for polymerizing olefins. One embodiment comprises polymerizing at least one monomer in a first loop reactor in the presence of a catalyst to produce a first polyolefin fraction. A portion of the first polyolefin fraction is transferred to a second loop reactor, connected in series with the first loop reactor. The process further comprises polymerizing in the second loop reactor at least one monomer in the presence of a catalyst to produce a second polyolefin fraction in addition to the first polyolefin fraction. The combination of the first and second polyolefin fractions can produce a polymer resin fluff having bimodal molecular weight distribution.
    Type: Grant
    Filed: May 21, 2014
    Date of Patent: February 17, 2015
    Assignee: Total Research & Technology Feluy
    Inventors: Louis Fouarge, Eric Damme, Olivier Miserque, Daniel Siraux, Philippe Bodart, Andre Lewalle, Marc Van der Auwera, Frans Van den Brande, Giacomo Conti, Hugo Vandaele, Mark Verleysen, Carl Van Camp, Etienne Laurent, Philippe Marechal, Marc Moers, Leopold D'Hooghe, Marjan Sillis, Kai Hortman, Pascal Folie, Renaud Oreins