Patents by Inventor Daniel Streblow

Daniel Streblow has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240116972
    Abstract: The present disclosure is concerned with 6-aza-nucleoside prodrugs that are capable of inhibiting a viral infection and methods of treating viral infections such as, for example, human immunodeficiency virus (HIV), human papillomavirus (HPV), chicken pox, infectious mononucleosis, mumps, measles, rubella, shingles, ebola, viral gastroenteritis, viral hepatitis, viral meningitis, human metapneumovirus, human parainfluenza virus type 1, parainfluenza virus type 2, parainfluenza virus type 3, respiratory syncytial virus, viral pneumonia, yellow fever virus, tick-borne encephalitis virus, Chikungunya virus (CHIKV), Venezuelan equine encephalitis (VEEV), Eastern equine encephalitis (EEEV), Western equine encephalitis (WEEV), dengue (DENV), influenza, West Nile virus (WNV), zika (ZIKV), Middle East Respiratory Syndromes (MERS), Severe Acute Respiratory Syndrome (SARS), and coronavirus disease 2019 (COVID-19), using these compounds.
    Type: Application
    Filed: November 15, 2023
    Publication date: April 11, 2024
    Inventors: Omar Moukha-Chafiq, Ashish Kumar Pathak, Shuklendu D. Karyakarte, Larry D. Bratton, Corinne E. Augelli-Szafran, Michael Diamond, Pei Yong Shi, Alec Jay Hirsch, Jessica Lee Smith, Daniel Streblow, Nicole Haese, Baoling Ying
  • Patent number: 11858956
    Abstract: The present disclosure is concerned with 6-aza-nucleoside prodrugs that are capable of inhibiting a viral infection and methods of treating viral infections such as, for example, human immunodeficiency virus (HIV), human papillomavirus (HPV), chicken pox, infectious mononucleosis, mumps, measles, rubella, shingles, ebola, viral gastroenteritis, viral hepatitis, viral meningitis, human metapneumovirus, human parainfluenza virus type 1, parainfluenza virus type 2, parainfluenza virus type 3, respiratory syncytial virus, viral pneumonia, yellow fever virus, tick-borne encephalitis virus, Chikungunya virus (CHIKV), Venezuelan equine encephalitis (VEEV), Eastern equine encephalitis (EEEV), Western equine encephalitis (WEEV), dengue (DENV), influenza, West Nile virus (WNV), zika (ZIKV), Middle East Respiratory Syndromes (MERS), Severe Acute Respiratory Syndrome (SARS), and coronavirus disease 2019 (COVID-19), using these compounds.
    Type: Grant
    Filed: December 17, 2021
    Date of Patent: January 2, 2024
    Assignees: Southern Research Institute, Oregon Health & Science University, Washington University in St. Louis, Board of Regents, The University of Texas System
    Inventors: Omar Moukha-Chafiq, Ashish Kumar Pathak, Shuklendu D. Karyakarte, Larry D. Bratton, Corinne E. Augelli-Szafran, Michael Diamond, Pei Yong Shi, Alec Jay Hirsch, Jessica Lee Smith, Daniel Streblow, Nicole Haese, Baoling Ying
  • Patent number: 11566019
    Abstract: The present disclosure is concerned with 2-pyrimidone compounds that are capable of inhibiting a viral infection and methods of treating alphavirus viral infections such as, for example, chikungunya, Eastern equine encephalitis (EEEV), Western equine encephalitis (WEEV), and Venezuelan equine encephalitis using these compounds. This abstract is intended as a scanning tool for purposes of searching in the particular art and is not intended to be limiting of the present invention.
    Type: Grant
    Filed: April 2, 2021
    Date of Patent: January 31, 2023
    Assignees: Southern Research Institute, Oregon Health and Science University
    Inventors: Ashish Kumar Pathak, Corinne E. Augelli-Szafran, Atefeh Garzan, Daniel Streblow, Nicole Haese
  • Publication number: 20220204545
    Abstract: The present disclosure is concerned with 6-aza-nucleoside prodrugs that are capable of inhibiting a viral infection and methods of treating viral infections such as, for example, human immunodeficiency virus (HIV), human papillomavirus (HPV), chicken pox, infectious mononucleosis, mumps, measles, rubella, shingles, ebola, viral gastroenteritis, viral hepatitis, viral meningitis, human metapneumovirus, human parainfluenza virus type 1, parainfluenza virus type 2, parainfluenza virus type 3, respiratory syncytial virus, viral pneumonia, yellow fever virus, tick-borne encephalitis virus, Chikungunya virus (CHIKV), Venezuelan equine encephalitis (VEEV), Eastern equine encephalitis (EEEV), Western equine encephalitis (WEEV), dengue (DENV), influenza, West Nile virus (WNV), zika (ZIKV), Middle East Respiratory Syndromes (MERS), Severe Acute Respiratory Syndrome (SARS), and coronavirus disease 2019 (COVID-19), using these compounds.
    Type: Application
    Filed: December 17, 2021
    Publication date: June 30, 2022
    Inventors: Omar Moukha-Chafiq, Ashish Kumar Pathak, Shuklendu D. Karyakarte, Larry D. Bratton, Corinne E. Augelli-Szafran, Michael Diamond, Pei Yong Shi, Alec Jay Hirsch, Jessica Lee Smith, Daniel Streblow, Nicole Haese, Baoling Ying
  • Publication number: 20200399264
    Abstract: The present disclosure is concerned with benzoannulene compounds that are capable of inhibiting a viral infection and methods of treating viral infections such as, for example, chikungunya, Venezuelan equine encephalitis, Eastern equine encephalitis, Western equine encephalitis, dengue, West Nile, influenza, and zika, using these compounds. This abstract is intended as a scanning tool for purposes of searching in the particular art and is not intended to be limiting of the present invention.
    Type: Application
    Filed: June 15, 2020
    Publication date: December 24, 2020
    Inventors: Ashish Kumar Pathak, Corinne E. Augelli-Szafran, Syed Kaleem Ahmed, Atefeh Garzan, Daniel Streblow, Nicole Haese
  • Publication number: 20170146519
    Abstract: Disclosed are small molecules capable of activating the type I interferon (IFN) response by way of the transcription factor IFN regulatory factor 3 (IRF3) were identified. A high throughput in vitro screen yielded 4-(2-chloro-6-fluorobenzyl)-N-(furan-2-ylmethyl)-3-oxo-3,4-dihydro-2H-benzo[b][1,4]thiazine-6-carboxamide (referred to herein as G10), which was found to trigger IRF3/IFN-associated transcription in human fibroblasts. To define cellular proteins essential to elicitation of the antiviral activity by the compound a reverse genetics approach that utilized genome editing via CRISPR/Cas9 technology was employed. This allowed the identification of IRF3, the IRF3-activating adaptor molecule STING, and the IFN-associated transcription factor STAT1 as required for observed gene induction and antiviral effects.
    Type: Application
    Filed: November 21, 2016
    Publication date: May 25, 2017
    Applicant: OREGON HEALTH & SCIENCE UNIVERSITY
    Inventors: Victor DeFilippis, Tina Sali, Kara Pryke, Jinu Abraham, Andrew Liu, Iris Archer, Kayla Sheridan, Aaron Nilsen, Rebecca Broeckel, Jessica Smith, Lisi Amsler, Daniel Streblow, Andrew Placzek
  • Publication number: 20020164579
    Abstract: There is disclosed an assay system for determining therapeutic activity for treating restenosis, atherosclerosis, chronic rejection syndrome and graft versus host disease (GVHD) by measuring inhibition of cell migration activity in smooth muscle cells expressing a US28 receptor from the CMV genome. Specifically, there is disclosed a method for measuring inhibition of cell migration in isolated cells transfected with US28 or infected with CMV and stimulated with a ligand. There is further disclosed a method for treating atherosclerosis, restenosis, chronic rejection syndrome and graft versus host disease (GVHD), comprising administering an effective amount of an agent that is a US28 receptor antagonist, wherein a US28 receptor antagonist comprises an inhibitor compound that prevents transduction of US28 receptor signal stimulated by a US28 receptor ligand, wherein a US28 receptor ligand is selected from the group consisting of RANTES, MIP-1&agr; and MCP.
    Type: Application
    Filed: January 11, 2002
    Publication date: November 7, 2002
    Inventors: Jay Nelson, Daniel Streblow, Cecilia Soderberg-Naucler, Patricia Smith, Fronziska Ruchti
  • Patent number: 6420121
    Abstract: There is disclosed an assay system for determining therapeutic activity for treating restenosis, atherosclerosis, chronic rejection syndrome and graft versus host disease (GVHD) by measuring inhibition of cell migration activity in smooth muscle cells expressing a US28 receptor from the CMV genome. Specifically, there is disclosed a method for measuring inhibition of cell migration in isolated cells transfected with US28 or infected with CMV and stimulated with a ligand. There is further disclosed a method for treating atherosclerosis, restenosis, chronic rejection syndrome and graft versus host disease (GVHD), comprising administering an effective amount of an agent that is a US28 receptor antagonist, wherein a US28 receptor antagonist comprises an inhibitor compound that prevents transduction of US28 receptor signal stimulated by a US28 receptor ligand, wherein a US28 receptor ligand is selected from the group consisting of RANTES, MIP-1&agr; and MCP.
    Type: Grant
    Filed: August 31, 1999
    Date of Patent: July 16, 2002
    Assignee: Oregon Health Sciences University
    Inventors: Jay Nelson, Daniel Streblow, Cecilia Soderberg-Naucler, Patricia Smith, Fronziska Ruchti
  • Publication number: 20010055755
    Abstract: The present invention provides methods of latent virus reactivation in monocyte-derived macrophages through allogeneic stimulation of peripheral blood mononuclear cells (“PBMC”), methods of culturing virus, and cultures of virally permissive monocyte-derived macrophages.
    Type: Application
    Filed: March 15, 2001
    Publication date: December 27, 2001
    Inventors: Cecilia Soderberg-Naucler, Kenneth Fish, Ashlee Moses, Daniel Streblow, Jay Nelson
  • Patent number: 6225048
    Abstract: The present invention provides methods of latent virus reactivation in monocyte-derived macrophages through allogeneic stimulation of peripheral blood mononuclear cells (“PBMC”), methods of culturing virus, and cultures of virally permissive monocyte-derived macrophages.
    Type: Grant
    Filed: September 30, 1998
    Date of Patent: May 1, 2001
    Assignee: Oregon Health Sciences University
    Inventors: Cecilia E. Soderberg-Naucler, Kenneth N. Fish, Ashlee Moses, Daniel Streblow, Jay Nelson