Patents by Inventor Daniel T. McCormick

Daniel T. McCormick has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11088000
    Abstract: Embodiments may also include a residual chemical reaction diagnostic device. The residual chemical reaction diagnostic device may include a substrate and a residual chemical reaction sensor formed on the substrate. In an embodiment, the residual chemical reaction sensor provides electrical outputs in response to the presence of residual chemical reactions. In an embodiment, the substrate is a device substrate, and the sensor is formed in a scribe line of the device substrate. In an alternative embodiment, the substrate is a process development substrate. In some embodiments, the residual chemical reaction sensor includes, a first probe pad, wherein a plurality of first arms extend out from the first probe pad, and a second probe pad, wherein a plurality of second arms extend out from the second probe pad and are interdigitated with the first arms.
    Type: Grant
    Filed: December 10, 2019
    Date of Patent: August 10, 2021
    Assignee: Applied Materials, Inc.
    Inventors: Leonard Tedeschi, Benjamin Schwarz, Changhun Lee, Ping Han Hsieh, Adauto Diaz, Jr., Daniel T. McCormick
  • Patent number: 10712525
    Abstract: A method and apparatus for packaging a MEMS device is disclosed that includes a MEMS die mounting surface, a MEMS device disposed on the mounting surface, and a fluid contained within the package and surrounding at least a portion of the MEMS device. The fluid may be selected to provide certain advantageous features. For example, the fluid may have a selected index of refraction that is matched with a lens index of refraction of the lens, have a viscosity selected to provide a predetermined mechanical damping to the MEMS device, be thermally coupled with the MEMS device and configured to remove heat from the MEMS device. The fluid may also be configured in mechanical cooperation with a spring mounted scanning element, a linear translation actuator, a rotational actuator, a lens, etc. to actuate or apply fluidic pressure to such elements.
    Type: Grant
    Filed: March 27, 2015
    Date of Patent: July 14, 2020
    Inventors: Albert Ting, Daniel T. McCormick, Michael Rattner
  • Publication number: 20200118896
    Abstract: Embodiments may also include a residual chemical reaction diagnostic device. The residual chemical reaction diagnostic device may include a substrate and a residual chemical reaction sensor formed on the substrate. In an embodiment, the residual chemical reaction sensor provides electrical outputs in response to the presence of residual chemical reactions. In an embodiment, the substrate is a device substrate, and the sensor is formed in a scribe line of the device substrate. In an alternative embodiment, the substrate is a process development substrate. In some embodiments, the residual chemical reaction sensor includes, a first probe pad, wherein a plurality of first arms extend out from the first probe pad, and a second probe pad, wherein a plurality of second arms extend out from the second probe pad and are interdigitated with the first arms.
    Type: Application
    Filed: December 10, 2019
    Publication date: April 16, 2020
    Inventors: Leonard Tedeschi, Benjamin Schwarz, Changhun Lee, Ping Han Hsieh, Adauto Diaz, JR., Daniel T. McCormick
  • Patent number: 10515862
    Abstract: Embodiments may also include a residual chemical reaction diagnostic device. The residual chemical reaction diagnostic device may include a substrate and a residual chemical reaction sensor formed on the substrate. In an embodiment, the residual chemical reaction sensor provides electrical outputs in response to the presence of residual chemical reactions. In an embodiment, the substrate is a device substrate, and the sensor is formed in a scribe line of the device substrate. In an alternative embodiment, the substrate is a process development substrate. In some embodiments, the residual chemical reaction sensor includes, a first probe pad, wherein a plurality of first arms extend out from the first probe pad, and a second probe pad, wherein a plurality of second arms extend out from the second probe pad and are interdigitated with the first arms.
    Type: Grant
    Filed: April 5, 2017
    Date of Patent: December 24, 2019
    Assignee: Applied Materials, Inc.
    Inventors: Leonard Tedeschi, Benjamin Schwarz, Changhun Lee, Ping Han Hsieh, Adauto Diaz, Daniel T. McCormick
  • Publication number: 20180294200
    Abstract: Embodiments may also include a residual chemical reaction diagnostic device. The residual chemical reaction diagnostic device may include a substrate and a residual chemical reaction sensor formed on the substrate. In an embodiment, the residual chemical reaction sensor provides electrical outputs in response to the presence of residual chemical reactions. In an embodiment, the substrate is a device substrate, and the sensor is formed in a scribe line of the device substrate. In an alternative embodiment, the substrate is a process development substrate. In some embodiments, the residual chemical reaction sensor includes, a first probe pad, wherein a plurality of first arms extend out from the first probe pad, and a second probe pad, wherein a plurality of second arms extend out from the second probe pad and are interdigitated with the first arms.
    Type: Application
    Filed: April 5, 2017
    Publication date: October 11, 2018
    Inventors: Leonard TEDESCHI, Benjamin SCHWARZ, Changhun LEE, Ping Han Hsieh, Adauto DIAZ, Daniel T. McCormick
  • Patent number: 9975758
    Abstract: Embodiments include devices and methods for detecting particles, monitoring etch or deposition rates, or controlling an operation of a wafer fabrication process. In an embodiment, one or more micro sensors are mounted on wafer processing equipment, and are capable of measuring material deposition and removal rates in real-time. The micro sensors are selectively exposed such that a sensing layer of a micro sensor is protected by a mask layer during active operation of another micro sensor, and the protective mask layer may be removed to expose the sensing layer when the other micro sensor reaches an end-of-life. Other embodiments are also described and claimed.
    Type: Grant
    Filed: July 13, 2017
    Date of Patent: May 22, 2018
    Assignee: Applied Materials, Inc.
    Inventors: Leonard Tedeschi, Lili Ji, Olivier Joubert, Dmitry Lubomirsky, Philip Allan Kraus, Daniel T. McCormick
  • Publication number: 20180057356
    Abstract: Embodiments include devices and methods for detecting particles, monitoring etch or deposition rates, or controlling an operation of a wafer fabrication process. In an embodiment, one or more micro sensors are mounted on wafer processing equipment, and are capable of measuring material deposition and removal rates in real-time. The micro sensors are selectively exposed such that a sensing layer of a micro sensor is protected by a mask layer during active operation of another micro sensor, and the protective mask layer may be removed to expose the sensing layer when the other micro sensor reaches an end-of-life. Other embodiments are also described and claimed.
    Type: Application
    Filed: July 13, 2017
    Publication date: March 1, 2018
    Inventors: Leonard Tedeschi, Lili Ji, Olivier Joubert, Dmitry Lubomirsky, Philip Allan Kraus, Daniel T. McCormick
  • Patent number: 9725302
    Abstract: Embodiments include devices and methods for detecting particles, monitoring etch or deposition rates, or controlling an operation of a wafer fabrication process. In an embodiment, one or more micro sensors are mounted on wafer processing equipment, and are capable of measuring material deposition and removal rates in real-time. The micro sensors are selectively exposed such that a sensing layer of a micro sensor is protected by a mask layer during active operation of another micro sensor, and the protective mask layer may be removed to expose the sensing layer when the other micro sensor reaches an end-of-life. Other embodiments are also described and claimed.
    Type: Grant
    Filed: August 25, 2016
    Date of Patent: August 8, 2017
    Assignee: Applied Materials, Inc.
    Inventors: Leonard Tedeschi, Lili Ji, Olivier Joubert, Dmitry Lubomirsky, Philip Allan Kraus, Daniel T. McCormick
  • Publication number: 20150198782
    Abstract: A method and apparatus for packaging a MEMS device is disclosed that includes a MEMS die mounting surface, a MEMS device disposed on the mounting surface, and a fluid contained within the package and surrounding at least a portion of the MEMS device. The fluid may be selected to provide certain advantageous features. For example, the fluid may have a selected index of refraction that is matched with a lens index of refraction of the lens, have a viscosity selected to provide a predetermined mechanical damping to the MEMS device, be thermally coupled with the MEMS device and configured to remove heat from the MEMS device. The fluid may also be configured in mechanical cooperation with a spring mounted scanning element, a linear translation actuator, a rotational actuator, a lens, etc. to actuate or apply fluidic pressure to such elements.
    Type: Application
    Filed: March 27, 2015
    Publication date: July 16, 2015
    Inventors: Albert Ting, Daniel T. McCormick, Michael Rattner
  • Patent number: 9018724
    Abstract: A method and apparatus for constructing MEMS devices is provided which employs a low cost molded housing that simultaneously provides precise and accurate alignment, mechanical protection, electrical connections and structural integrity for mounting optical and MEMS components. The package includes a MEMS die mounting surface, an optical component mounting surface and an optical imaging window monolithically fabricated with the MEMS die mounting surface in a predetermined orientation for providing alignment between the MEMS die and optical components. A MEMS adaptor plate is provided to facilitate connections of a MEMS die to external components.
    Type: Grant
    Filed: March 28, 2008
    Date of Patent: April 28, 2015
    Assignee: AdvancedMEMS LLP
    Inventors: Albert Ting, Daniel T. McCormick, Michael Rattner
  • Publication number: 20090039489
    Abstract: A method and apparatus for constructing MEMS devices is provided which employs a low cost molded housing that simultaneously provides precise and accurate alignment, mechanical protection, electrical connections and structural integrity for mounting optical and MEMS components. The package includes a MEMS die mounting surface, an optical component mounting surface and an optical imaging window monolithically fabricated with the MEMS die mounting surface in a predetermined orientation for providing alignment between the MEMS die and optical components. A MEMS adaptor plate is provided to facilitate connections of a MEMS die to external components.
    Type: Application
    Filed: March 28, 2008
    Publication date: February 12, 2009
    Inventors: Albert Ting, Daniel T. McCormick, Michael Rattner
  • Publication number: 20090043211
    Abstract: A micro-electromechanical system (MEMS) probe package is provided including a first reflective element receiving a light beam directed into to the probe package and a second reflective element receiving light directed from the first reflective element. The second reflective element directs light in an optical path extending from the probe package. At least one of the reflective elements includes a MEMS mirror. An embodiment of the package is made with a monolithic housing having mounting surfaces formed therein for aligning the first reflective element with the second reflective element. The monolithic housing also includes a mounting surface for aligning at least one lens with at least one of the reflective elements.
    Type: Application
    Filed: March 28, 2008
    Publication date: February 12, 2009
    Inventors: Albert Ting, Daniel T. McCormick, Michael Rattner