Patents by Inventor Daniel W. Gibson
Daniel W. Gibson has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Patent number: 7080437Abstract: To manufacture an axially collapsible driveshaft assembly, first and second tubular members are disposed in an axially overlapping relationship. Central portions of the concentric tubular members are then deformed into conformance with a die cavity having a non-circular cross sectional shape. The deformed first and second tubular members are then cut to provide two pairs of outer and inner tubular sections. Next, the outer tubular sections are removed from the associated inner tubular sections, and the inner tubular sections are oriented such that the deformed portions thereof are aligned with the deformed portions of the outer tubular sections. Lastly, the deformed portions of the inner tubular sections are inserted within the deformed portions of the outer tubular sections to form a pair of axially collapsible driveshaft assemblies.Type: GrantFiled: April 4, 2003Date of Patent: July 25, 2006Assignee: Torque-Traction Technologies LLCInventors: Jose da Silva, Daniel W. Gibson
-
Patent number: 7007362Abstract: A method of forming a slip joint includes providing a forming mandrel having a plurality of axially extending external splines, placing an inner tube circumferentially about the mandrel, and applying radially inward pressure on the inner tube to deform the inner tube and cause it to conform to the shape of the mandrel. The deformation step forms splines on the outer surface of the inner tube. A circumferential seal is then applied around the inner tube, and an outer tube is placed around the inner tube and the seal. Radially inward pressure is applied on the outer tube to deform the outer tube and cause it to conform to the shape of the inner tube, and thereby forming splines on the inner surface of the outer tube. The splines on the outer surface of the inner tube and the splines on the inner surface of the outer tube are configured to cooperate together to form a slip joint.Type: GrantFiled: April 29, 2003Date of Patent: March 7, 2006Assignee: Torque-TractionTechnologies, Inc.Inventor: Daniel W. Gibson
-
Patent number: 6893353Abstract: A rolling ball spline type of slip joint includes a first tubular member having a plurality of inwardly extending regions formed therein. The first tubular member has a wall thickness that is essentially uniform throughout the circumference thereof. The slip joint also includes a second tubular member having a plurality of outwardly extending regions formed therein. The inwardly extending regions of the first tubular member are radially aligned with the outwardly extending region of the second tubular member to define a plurality of longitudinally extending raceways. The second tubular member has a wall thickness that is essentially uniform throughout the circumference thereof. A plurality of balls is disposed in each of the raceways for transmitting rotational force between the first and second tubular members, while accommodating a limited amount of relative axial movement therebetween.Type: GrantFiled: June 18, 2002Date of Patent: May 17, 2005Assignee: Torque-Traction Technologies, Inc.Inventors: Jeffrey A. Dutkiewicz, Daniel W. Gibson, Mark S. Williams
-
Publication number: 20040216298Abstract: A method of forming a slip joint includes providing a forming mandrel having a plurality of axially extending external splines, placing an inner tube circumferentially about the mandrel, and applying radially inward pressure on the inner tube to deform the inner tube and cause it to conform to the shape of the mandrel. The deformation step forms splines on the outer surface of the inner tube. A circumferential seal is then applied around the inner tube, and an outer tube is placed around the inner tube and the seal. Radially inward pressure is applied on the outer tube to deform the outer tube and cause it to conform to the shape of the inner tube, and thereby forming splines on the inner surface of the outer tube. The splines on the outer surface of the inner tube and the splines on the inner surface of the outer tube are configured to cooperate together to form a slip joint.Type: ApplicationFiled: April 29, 2003Publication date: November 4, 2004Inventor: Daniel W. Gibson
-
Publication number: 20030232656Abstract: A rolling ball spline type of slip joint includes a first tubular member having a plurality of inwardly extending regions formed therein. The first tubular member has a wall thickness that is essentially uniform throughout the circumference thereof. The slip joint also includes a second tubular member having a plurality of outwardly extending regions formed therein. The inwardly extending regions of the first tubular member are radially aligned with the outwardly extending region of the second tubular member to define a plurality of longitudinally extending raceways. The second tubular member has a wall thickness that is essentially uniform throughout the circumference thereof. A plurality of balls is disposed in each of the raceways for transmitting rotational force between the first and second tubular members, while accommodating a limited amount of relative axial movement therebetween.Type: ApplicationFiled: June 18, 2002Publication date: December 18, 2003Inventors: Jeffrey A. Dutkiewicz, Daniel W. Gibson, Mark S. Williams
-
Publication number: 20030213117Abstract: To manufacture an axially collapsible driveshaft assembly, first and second tubular members are disposed in an axially overlapping relationship. Central portions of the concentric tubular members are then deformed into conformance with a die cavity having a non-circular cross sectional shape. The deformed first and second tubular members are then cut to provide two pairs of outer and inner tubular sections. Next, the outer tubular sections are removed from the associated inner tubular sections, and the inner tubular sections are oriented such that the deformed portions thereof are aligned with the deformed portions of the outer tubular sections. Lastly, the deformed portions of the inner tubular sections are inserted within the deformed portions of the outer tubular sections to form a pair of axially collapsible driveshaft assemblies.Type: ApplicationFiled: April 4, 2003Publication date: November 20, 2003Inventors: Jose da Silva, Daniel W. Gibson
-
Patent number: 6484384Abstract: A method of manufacturing a collapsible driveshaft assembly includes the steps of disposing an end of a first tube within a forming die having a non-circular cross sectional shape, expanding the end of the first tube into conformance with the die cavity, inserting an end of a second tube is inserted within the deformed end of the first tube, and expanding the end of the second tube into conformance with the end of the first tube. As a result of this expansion, outwardly extending regions and inwardly extending regions of the second tube extend into cooperation with outwardly extending regions and inwardly extending regions of the first tube so as to cause the first and second tubes to function as cooperating male and female splined members. As a result, a rotational driving connection therebetween to form the driveshaft. When a relatively large axial force is applied to the ends of the telescoping driveshaft, the second tube will move axially within the first tube, thereby collapsing and absorbing energy.Type: GrantFiled: December 30, 1999Date of Patent: November 26, 2002Assignee: Spicer Driveshaft, Inc.Inventors: Daniel W. Gibson, Christopher C. Cheney, Daniel C. Perry
-
Publication number: 20020082093Abstract: A structure positively retains the bearing cups on the trunnions of a universal joint cross prior to assembly into a vehicle. The cross includes a body portion having a plurality of trunnions extending outwardly therefrom. Each of the trunnions may have an annular ridge formed thereon defining an increased outer diameter. A bearing cup is rotatably mounted on each of the trunnions. Each of the bearing cups has a rigid dust guard attached thereto. Each of the dust guards has an inwardly extending portion that defines an inner diameter. The inwardly extending portion of each of the dust guards extends at an angle that is less than ninety degrees relative to an axis defined by the associated trunnion and relative to the sides of the bearing cups. The inner diameters defined by the inwardly extending portions of the dust guards are smaller than the outer diameters defined by the annular ridges.Type: ApplicationFiled: December 21, 2000Publication date: June 27, 2002Inventor: Daniel W. Gibson
-
Patent number: 6406373Abstract: A structure positively retains the bearing cups on the trunnions of a universal joint cross prior to assembly into a vehicle. The cross includes a body portion having a plurality of trunnions extending outwardly therefrom. Each of the trunnions may have an annular ridge formed thereon defining an increased outer diameter. A bearing cup is rotatably mounted on each of the trunnions. Each of the bearing cups has a rigid dust guard attached thereto. Each of the dust guards has an inwardly extending portion that defines an inner diameter. The inwardly extending portion of each of the dust guards extends at an angle that is less than ninety degrees relative to an axis defined by the associated trunnion and relative to the sides of the bearing cups. The inner diameters defined by the inwardly extending portions of the dust guards are smaller than the outer diameters defined by the annular ridges. Thus, during installation, the inwardly extending portions.Type: GrantFiled: December 21, 2000Date of Patent: June 18, 2002Assignee: Spicer Driveshaft, Inc.Inventor: Daniel W. Gibson
-
Patent number: 6371859Abstract: A driveshaft formed from a single piece of material having a constant diameter includes a controlled collapse zone in the interior thereof. The controlled collapse zone includes a collapse initiation portion, a collapse distance control portion, and a collapse termination portion. The collapse initiation portion extends from a first normally sized portion of the driveshaft and is preferably formed having a generally semi-circular bulge or bump shape that extends a relatively short axial distance. Preferably, the collapse initiation portion is formed having a diameter that is somewhat larger that the normal diameter of the driveshaft. The collapse distance control portion extends from the collapse initiation portion and is preferably formed having an elongated cylindrical shape that extends a relatively long axial length.Type: GrantFiled: February 3, 2000Date of Patent: April 16, 2002Assignee: Dana CorporationInventor: Daniel W. Gibson