Patents by Inventor Daniel W. Jecks

Daniel W. Jecks has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10202958
    Abstract: A system includes an ultra-capacitor and battery system comprising a battery, a DC-DC converter, and an ultra-capacitor. An auto stop/start module is configured to perform an auto stop event of an engine of a vehicle and an auto start event of the engine of the vehicle based on operating parameters while an ignition is ON. A voltage monitoring module is configured to, in response to a request for an auto start event, selectively discharge the ultra-capacitor during cranking for the auto start event, accumulate a plurality of voltage delta values while the ultra-capacitor discharges during the cranking, and selectively disable the auto stop/start module based on the plurality of voltage delta values.
    Type: Grant
    Filed: August 26, 2015
    Date of Patent: February 12, 2019
    Assignee: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: John W. Siekkinen, Daniel W. Jecks, Junhong Dai
  • Patent number: 10060985
    Abstract: A system includes an ultra-capacitor and battery system comprising a battery, an ultra-capacitor, a DC-DC converter, a first temperature sensor to sense a battery temperature, a second temperature sensor to sense an ultra-capacitor temperature and a third temperature sensor to sense a DC-DC converter temperature. An auto stop/start module is configured to selectively stop and restart an engine of a vehicle while an ignition system is ON based on operating parameters. A temperature sensing module communicates with the auto stop/start module and is configured to determine differences between temperatures sensed by the first sensor, the second sensor and the third sensor and to selectively disable the auto stop/start module based on the differences.
    Type: Grant
    Filed: August 26, 2015
    Date of Patent: August 28, 2018
    Assignee: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: John W. Siekkinen, Daniel W. Jecks, Junhong Dai
  • Patent number: 10026238
    Abstract: A control system for a vehicle includes a first vehicle system including a plurality of components and a controller. The controller monitors diagnostic data for the plurality of components of the first vehicle system and outputs a two-state status indicator for each of the components of the first vehicle system. States of the two-state status indicator include a failing state and a not failing state. A control module is configured to receive the two-state status indicator and the diagnostic data from the first vehicle system and to convert the two-state status indicator into a three-state status indicator. The three-state status indicator includes a pass state, a fail state and an indeterminate state. The control module is further configured to alter an engine operating parameter based on the three-state status indicator.
    Type: Grant
    Filed: August 26, 2015
    Date of Patent: July 17, 2018
    Assignee: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: John W. Siekkinen, Daniel W. Jecks, Junhong Dai
  • Patent number: 9874167
    Abstract: A torque request module determines a torque request for an engine based on a driver input. A cylinder control module determines a target fraction of a total number of cylinders of the engine to be activated based on the torque request. An air fuel imbalance (AFIM) module selectively commands that the cylinder control module set the target fraction based on a predetermined fraction of the total number of cylinders of the engine to be activated. The cylinder control module further: sets the target fraction based on the predetermined fraction in response to the command; and activates and deactivates opening of intake and exhaust valves of the cylinders of the engine based on the target fraction. The AFIM module further, while the target firing fraction is set based on the predetermined fraction, selectively diagnoses the presence of an AFIM fault based on samples of a signal from an oxygen sensor.
    Type: Grant
    Filed: June 8, 2016
    Date of Patent: January 23, 2018
    Assignee: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: Ian J. MacEwen, David A. Gorajek, Douglas J. Moening, Daniel W. Jecks
  • Publication number: 20170356362
    Abstract: A torque request module determines a torque request for an engine based on a driver input. A cylinder control module determines a target fraction of a total number of cylinders of the engine to be activated based on the torque request. An air fuel imbalance (AFIM) module selectively commands that the cylinder control module set the target fraction based on a predetermined fraction of the total number of cylinders of the engine to be activated. The cylinder control module further: sets the target fraction based on the predetermined fraction in response to the command; and activates and deactivates opening of intake and exhaust valves of the cylinders of the engine based on the target fraction. The AFIM module further, while the target firing fraction is set based on the predetermined fraction, selectively diagnoses the presence of an AFIM fault based on samples of a signal from an oxygen sensor.
    Type: Application
    Filed: June 8, 2016
    Publication date: December 14, 2017
    Inventors: Ian J. MACEWEN, David A. Gorajek, Douglas J. Moening, Daniel W. Jecks
  • Publication number: 20170016419
    Abstract: A system includes an ultra-capacitor and battery system comprising a battery, an ultra-capacitor, a DC-DC converter, a first temperature sensor to sense a battery temperature, a second temperature sensor to sense an ultra-capacitor temperature and a third temperature sensor to sense a DC-DC converter temperature. An auto stop/start module is configured to selectively stop and restart an engine of a vehicle while an ignition system is ON based on operating parameters. A temperature sensing module communicates with the auto stop/start module and is configured to determine differences between temperatures sensed by the first sensor, the second sensor and the third sensor and to selectively disable the auto stop/start module based on the differences.
    Type: Application
    Filed: August 26, 2015
    Publication date: January 19, 2017
    Inventors: John W. SIEKKINEN, Daniel W. JECKS, Junhong DAI
  • Publication number: 20170018126
    Abstract: A control system for a vehicle includes a first vehicle system including a plurality of components and a controller. The controller monitors diagnostic data for the plurality of components of the first vehicle system and outputs a two-state status indicator for each of the components of the first vehicle system. States of the two-state status indicator include a failing state and a not failing state. A control module is configured to receive the two-state status indicator and the diagnostic data from the first vehicle system and to convert the two-state status indicator into a three-state status indicator. The three-state status indicator includes a pass state, a fail state and an indeterminate state. The control module is further configured to alter an engine operating parameter based on the three-state status indicator.
    Type: Application
    Filed: August 26, 2015
    Publication date: January 19, 2017
    Inventors: John W. Siekkinen, Daniel W. Jecks, Junhong Dai
  • Publication number: 20170016420
    Abstract: A system includes an ultra-capacitor and battery system comprising a battery, a DC-DC converter, and an ultra-capacitor. An auto stop/start module is configured to perform an auto stop event of an engine of a vehicle and an auto start event of the engine of the vehicle based on operating parameters while an ignition is ON. A voltage monitoring module is configured to, in response to a request for an auto start event, selectively discharge the ultra-capacitor during cranking for the auto start event, accumulate a plurality of voltage delta values while the ultra-capacitor discharges during the cranking, and selectively disable the auto stop/start module based on the plurality of voltage delta values.
    Type: Application
    Filed: August 26, 2015
    Publication date: January 19, 2017
    Inventors: John W. SIEKKINEN, Daniel W. JECKS, Junhong DAI
  • Patent number: 9230371
    Abstract: A fault diagnostic system of a vehicle includes an error module, a proportional integral (PI) module, and a fault module. The error module determines an error based on a difference between a sample of a signal generated by an exhaust gas oxygen sensor and a target value of the sample. The PI module determines a proportional correction based on the error, determines an integral correction based on the error, and determines a fueling correction based on the proportional and integral corrections. The fault module selectively diagnoses a fault based on the integral correction and the fueling correction.
    Type: Grant
    Filed: December 6, 2013
    Date of Patent: January 5, 2016
    Assignee: GM Global Technology Operations LLC
    Inventors: Daniel W. Jecks, Steven Ward Majors, Ian J. MacEwen
  • Publication number: 20150081160
    Abstract: A fault diagnostic system of a vehicle includes an error module, a proportional integral (PI) module, and a fault module. The error module determines an error based on a difference between a sample of a signal generated by an exhaust gas oxygen sensor and a target value of the sample. The PI module determines a proportional correction based on the error, determines an integral correction based on the error, and determines a fueling correction based on the proportional and integral corrections. The fault module selectively diagnoses a fault based on the integral correction and the fueling correction.
    Type: Application
    Filed: December 6, 2013
    Publication date: March 19, 2015
    Applicant: GM Global Technology Operations LLC
    Inventors: Daniel W. Jecks, Steven Ward Majors, Ian J. Mac Ewen