Patents by Inventor Daniel W. Peace

Daniel W. Peace has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10908623
    Abstract: A gas regulating and control system is provided that is configured to be received at a gas regulator installed at a remote location for remotely controlling the gas flow, the system including a gas control module including a plurality of sensors associated with the gas regulator, the plurality of sensors configured to sense a corresponding plurality of parameters associated with the gas regulator. The gas control module is configured to automatically turn off the gas to the gas regulator when one or more of the corresponding plurality sensed parameters is determined to be outside an acceptable range for the sensed parameter.
    Type: Grant
    Filed: April 9, 2019
    Date of Patent: February 2, 2021
    Assignee: Sensus Spectrum, LLC
    Inventor: Daniel W. Peace
  • Patent number: 10788343
    Abstract: A flow meter system for detecting the flow of a fluid between an inlet and an outlet. A top plate is coupled to the inlet and the outlet and a sensor is configured to detect the fluid flowing therebetween. A main module is coupled between the inlet and the outlet and has a main rotor configured to be rotated by the fluid flowing through the main module. An output shaft is coupled to the main rotor such that rotation of the main rotor causes rotation of the output shaft. A first spacer is removably coupled between the main module and the outlet. The first spacer is rotorless. The top plate defines an opening that receives the output shaft. The first spacer ensures alignment between the output shaft and the opening defined in the top plate. The sensor senses rotation of the output shaft to detect the flow of fluid.
    Type: Grant
    Filed: February 12, 2019
    Date of Patent: September 29, 2020
    Assignee: Sensus Spectrum LLC
    Inventors: Daniel W. Peace, Michael S. McCracken
  • Publication number: 20200256711
    Abstract: A flow meter system for detecting the flow of a fluid between an inlet and an outlet. A top plate is coupled to the inlet and the outlet and a sensor is configured to detect the fluid flowing therebetween. A main module is coupled between the inlet and the outlet and has a main rotor configured to be rotated by the fluid flowing through the main module. An output shaft is coupled to the main rotor such that rotation of the main rotor causes rotation of the output shaft. A first spacer is removably coupled between the main module and the outlet. The first spacer is rotorless. The top plate defines an opening that receives the output shaft. The first spacer ensures alignment between the output shaft and the opening defined in the top plate. The sensor senses rotation of the output shaft to detect the flow of fluid.
    Type: Application
    Filed: February 12, 2019
    Publication date: August 13, 2020
    Applicant: Sensus Spectrum LLC
    Inventors: Daniel W. Peace, Michael S. McCracken
  • Publication number: 20200064872
    Abstract: A gas regulating and control system is provided that is configured to be received at a gas regulator installed at a remote location for remotely controlling the gas flow, the system including a gas control module including a plurality of sensors associated with the gas regulator, the plurality of sensors configured to sense a corresponding plurality of parameters associated with the gas regulator. The gas control module is configured to automatically turn off the gas to the gas regulator when one or more of the corresponding plurality sensed parameters is determined to be outside an acceptable range for the sensed parameter.
    Type: Application
    Filed: April 9, 2019
    Publication date: February 27, 2020
    Inventor: Daniel W. Peace
  • Patent number: 9261204
    Abstract: The present invention comprises a method and apparatus for controlling gas flow via a gas shut-off valve assembly. In at least one embodiment, the assembly is configured to drive its shut-off valve from an open position to a closed position, in response to detecting a valve closure condition. The assembly in one or more embodiments operates as an intelligent node in an AMR network, and it interprets a received closure command as a closure condition. Additionally, or alternatively, the assembly detects abnormal operating conditions as the closure condition. Advantageously, the assembly performs initial closure verification, based on detecting movement of the valve into the closed position, and performs subsequent closure verification, based on monitoring downstream gas pressure. In the same or other embodiments, the assembly provides enhanced stand-alone reliability and safety by incorporating one or more valve clearing/cleaning routines into its operations.
    Type: Grant
    Filed: February 28, 2014
    Date of Patent: February 16, 2016
    Assignee: SENSUS USA INC.
    Inventors: Tim Scott, Dirk Steckmann, Daniel W. Peace, Doug Vargas
  • Patent number: 9182052
    Abstract: The present invention comprises a method and apparatus for controlling gas flow via a gas shut-off valve assembly. In at least one embodiment, the assembly is configured to drive its shut-off valve from an open position to a closed position, in response to detecting a valve closure condition. The assembly in one or more embodiments operates as an intelligent node in an AMR network, and it interprets a received closure command as a closure condition. Additionally, or alternatively, the assembly detects abnormal operating conditions as the closure condition. Advantageously, the assembly performs initial closure verification, based on detecting movement of the valve into the closed position, and performs subsequent closure verification, based on monitoring downstream gas pressure. In the same or other embodiments, the assembly provides enhanced stand-alone reliability and safety by incorporating one or more valve clearing/cleaning routines into its operations.
    Type: Grant
    Filed: February 28, 2014
    Date of Patent: November 10, 2015
    Assignee: Sensus USA Inc.
    Inventors: Tim Scott, Dirk Steckmann, Daniel W. Peace, Doug Vargas
  • Publication number: 20140225015
    Abstract: The present invention comprises a method and apparatus for controlling gas flow via a gas shut-off valve assembly. In at least one embodiment, the assembly is configured to drive its shut-off valve from an open position to a closed position, in response to detecting a valve closure condition. The assembly in one or more embodiments operates as an intelligent node in an AMR network, and it interprets a received closure command as a closure condition. Additionally, or alternatively, the assembly detects abnormal operating conditions as the closure condition. Advantageously, the assembly performs initial closure verification, based on detecting movement of the valve into the closed position, and performs subsequent closure verification, based on monitoring downstream gas pressure. In the same or other embodiments, the assembly provides enhanced stand-alone reliability and safety by incorporating one or more valve clearing/cleaning routines into its operations.
    Type: Application
    Filed: February 28, 2014
    Publication date: August 14, 2014
    Applicant: SENSUS USA INC.
    Inventors: Tim Scott, Dirk Steckmann, Daniel W. Peace, Doug Vargas
  • Publication number: 20140225014
    Abstract: The present invention comprises a method and apparatus for controlling gas flow via a gas shut-off valve assembly. In at least one embodiment, the assembly is configured to drive its shut-off valve from an open position to a closed position, in response to detecting a valve closure condition. The assembly in one or more embodiments operates as an intelligent node in an AMR network, and it interprets a received closure command as a closure condition. Additionally, or alternatively, the assembly detects abnormal operating conditions as the closure condition. Advantageously, the assembly performs initial closure verification, based on detecting movement of the valve into the closed position, and performs subsequent closure verification, based on monitoring downstream gas pressure. In the same or other embodiments, the assembly provides enhanced stand-alone reliability and safety by incorporating one or more valve clearing/cleaning routines into its operations.
    Type: Application
    Filed: February 28, 2014
    Publication date: August 14, 2014
    Applicant: Sensus USA Inc.
    Inventors: Tim Scott, Dirk Steckmann, Daniel W. Peace, Doug Vargas
  • Patent number: 8701703
    Abstract: The present invention comprises a method and apparatus for controlling gas flow via a gas shut-off valve assembly. In at least one embodiment, the assembly is configured to drive its shut-off valve from an open position to a closed position, in response to detecting a valve closure condition. The assembly in one or more embodiments operates as an intelligent node in an AMR network, and it interprets a received closure command as a closure condition. Additionally, or alternatively, the assembly detects abnormal operating conditions as the closure condition. Advantageously, the assembly performs initial closure verification, based on detecting movement of the valve into the closed position, and performs subsequent closure verification, based on monitoring downstream gas pressure. In the same or other embodiments, the assembly provides enhanced stand-alone reliability and safety by incorporating one or more valve clearing/cleaning routines into its operations.
    Type: Grant
    Filed: August 9, 2010
    Date of Patent: April 22, 2014
    Assignee: Sensus USA Inc.
    Inventors: Tim Scott, Dirk Steckmann, Daniel W. Peace, Doug Vargas
  • Publication number: 20120031499
    Abstract: The present invention comprises a method and apparatus for controlling gas flow via a gas shut-off valve assembly. In at least one embodiment, the assembly is configured to drive its shut-off valve from an open position to a closed position, in response to detecting a valve closure condition. The assembly in one or more embodiments operates as an intelligent node in an AMR network, and it interprets a received closure command as a closure condition. Additionally, or alternatively, the assembly detects abnormal operating conditions as the closure condition. Advantageously, the assembly performs initial closure verification, based on detecting movement of the valve into the closed position, and performs subsequent closure verification, based on monitoring downstream gas pressure. In the same or other embodiments, the assembly provides enhanced stand-alone reliability and safety by incorporating one or more valve clearing/cleaning routines into its operations.
    Type: Application
    Filed: August 9, 2010
    Publication date: February 9, 2012
    Applicant: SENSUS USA INC.
    Inventors: Tim Scott, Dirk Steckmann, Daniel W. Peace, Doug Vargas
  • Patent number: 6250167
    Abstract: A sensor assembly for a fluid flow meter, more particularly a gas meter, includes a sensor well made of a non-magnetic material and a sensor which is removable from the well without depressurizing the fluid line in which the flow meter is located. The sensor well is mounted within a bore formed in a meter body boss and, in a preferred embodiment, extends through the internal rotor housing and includes an inner face contoured to conform to the inner wall of the housing. In certain embodiments of the invention, the sensor is shaped to cover the sensor well mounting bolts so that the well cannot be removed without first removing the sensor. In other embodiments, the sensor well mounting bolts are retained in the sensor well by dowel pins, stakes or retaining rings such that the bolts must be gradually and sequentially loosened to remove the sensor well, in order to prevent improper removal of the sensor well from the meter body boss.
    Type: Grant
    Filed: August 31, 1998
    Date of Patent: June 26, 2001
    Assignee: M & FC Holding Company
    Inventors: Daniel W. Peace, Lewis C. Ometz, Gary P. Corpron
  • Patent number: 5877430
    Abstract: A turbine gas flow meter (10) includes a meter body (12) including an inlet portion (24) having an inlet body (32) mounted therein, with an exit end (30) of the body inlet portion being defined at an internal plenum (22) of the meter body, and a removable turbine meter measuring module (44) including a rotor assembly (48) which is inserted into the plenum with an inlet end (127) of the rotor assembly and the exit end of the inlet portion defining an interface therebetween. A closed space (114) is formed about the rotor assembly within the plenum between an inner wall (106) of the body and outer walls (116, 118) of the rotor assembly. An axial gap (128) between a surface (130) of the rotor assembly inlet end and a surface (132) of the body inlet portion exit end, and/or radial notches in either of the surfaces (130, 132), provide fluid pressure communication from the interface to the closed space.
    Type: Grant
    Filed: June 13, 1997
    Date of Patent: March 2, 1999
    Assignee: M&FC Holding Company, Inc.
    Inventors: Daniel W. Peace, Richard V. Woodward
  • Patent number: 5473932
    Abstract: Methods and an apparatus for measuring gas flow with greater reliability than earlier single-rotor and double-rotor turbine meters and dual turbine meter systems are disclosed. The apparatus comprises two independent rotors, in close proximity of each other, housed in the same meter body, but isolated from the effects of each other. No pressure and temperature correction are needed for accuracy performance comparison between the two rotors. Because of the two rotor averaging technique, the reliability of the volume totalization is greatly improved over earlier double-rotor and single-rotor designs.
    Type: Grant
    Filed: September 22, 1993
    Date of Patent: December 12, 1995
    Assignee: M & FC Holding Company, Inc.
    Inventors: James J. Fitzpatrick, Daniel W. Peace
  • Patent number: RE36401
    Abstract: Methods and an apparatus for measuring gas flow with greater reliability than earlier single-rotor and double-rotor turbine meters and dual turbine meter systems are disclosed. The apparatus comprises two independent rotors, in close proximity of each other, housed in the same meter body, but isolated from the effects of each other. No pressure and temperature correction are needed for accuracy performance comparison between the two rotors. Because of the two rotor averaging technique, the reliability of the volume totalization is greatly improved over earlier double-rotor and single-rotor designs.
    Type: Grant
    Filed: September 9, 1997
    Date of Patent: November 23, 1999
    Assignee: M & FC Holding Company, Inc.
    Inventors: James J. Fitzpatrick, Daniel W. Peace