Patents by Inventor Daniel Warren Mellinger, III

Daniel Warren Mellinger, III has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20190205609
    Abstract: Various embodiments include methods, devices, and robotic vehicle processing devices implementing such methods for automatically adjusting the minimum distance that a robotic vehicle is permitted to approach an object by a collision avoidance system (the “proximity threshold”) to compensate for unpredictability in environmental or other conditions that may compromise control or navigation of the robotic vehicle, and/or to accommodate movement unpredictability of the object. Some embodiments enable dynamic adjustments to the proximity threshold to compensate for changes in environmental and other conditions. Some embodiments include path planning that takes into account unpredictability in environmental or other conditions plus movement unpredictability of objects in the environment.
    Type: Application
    Filed: January 3, 2018
    Publication date: July 4, 2019
    Inventors: Michael Franco TAVEIRA, Daniel Warren MELLINGER, III
  • Publication number: 20190206268
    Abstract: Various embodiments include methods, devices, and robotic vehicles that adjust a proximity threshold implemented in a collision avoidance system based on whether a payload is being carried. Methods may include determining whether a payload is carried by the robotic vehicle, setting a proximity threshold for collision avoidance in response to determining that a payload is carried by the robotic vehicle, and controlling one or more motors of the robotic vehicle using the proximity threshold for collision avoidance. Some embodiments may include raising the proximity threshold when a payload is not being carried or decreasing proximity threshold when a payload is being carried. Some embodiments may include determining a classification of a payload and setting the proximity threshold based at least in part on the classification.
    Type: Application
    Filed: January 3, 2018
    Publication date: July 4, 2019
    Inventors: Michael Franco TAVEIRA, Daniel Warren Mellinger, III
  • Publication number: 20190206267
    Abstract: Various embodiments include methods and aerial robotic vehicles that adjust a flight control parameter based on whether propeller guards are installed. An aerial robotic vehicle processor may determine whether a propeller guard is installed, set a flight parameter based on the determination, and control one or more motors of the aerial robotic vehicle using the flight parameter. When propeller guards are installed, the flight parameter may be set to a value appropriate for controlling the aerial robotic vehicle when the propeller guard is installed. The flight parameter may be one or more of control gains, drag profile control settings, a maximum rotor speed, maximum speed of the aerial robotic vehicle, maximum power usage, restrictions to select modes of operation, visual algorithm settings, or a flight plan. Data from one or more sensors and/or motor controllers may be used to determine the presence of a propeller guard.
    Type: Application
    Filed: January 3, 2018
    Publication date: July 4, 2019
    Inventors: Michael Franco TAVEIRA, Daniel Warren Mellinger, III
  • Publication number: 20190202449
    Abstract: Various embodiments include methods, devices, and robotic vehicle processing devices implementing such methods for automatically adjusting the minimum distance that a robotic vehicle is permitted to approach an object by a collision avoidance system based upon a classification or type of object.
    Type: Application
    Filed: January 3, 2018
    Publication date: July 4, 2019
    Inventors: Michael Franco Taveira, Daniel Warren Mellinger, III
  • Publication number: 20190100108
    Abstract: A charging station for a robotic vehicle includes a base configured for use on a body of water; a docking terminal supported on the base, the docking terminal including a charger configured to charge a robotic vehicle docked on the docking terminal; and a renewable energy harvesting device coupled to the charger to provide power to the charger.
    Type: Application
    Filed: September 29, 2017
    Publication date: April 4, 2019
    Inventors: Jonathan Paul DAVIS, Daniel Warren Mellinger, III, Stephen Marc Chaves, Rizwan Ahmed, Moussa Ben Coulibaly, Yoga Nadaraajan, John Anthony Dougherty
  • Publication number: 20190079511
    Abstract: Various embodiments include methods for rotor anomaly detection and response for an aerial robotic vehicle. A processor of the aerial robotic vehicle may obtain data from a sensor onboard the aerial robotic vehicle configured to detect anomalies in rotors. The processor may determine whether an anomaly is detected in any rotor based on the obtained data and take an action in response to detecting an anomaly in one or more rotors. Examples of actions that may be taken in response to detecting a rotor anomaly include preventing the aerial robotic vehicle from lifting-off, limiting operations of the aerial robotic vehicle within certain performance limits, and issuing a maintenance alert by the processor.
    Type: Application
    Filed: September 12, 2017
    Publication date: March 14, 2019
    Inventors: Ross Eric Kessler, Michael Joshua Shomin, Jonathan Paul Davis, Travis Van Schoyck, Daniel Warren Mellinger, III
  • Publication number: 20190072984
    Abstract: Some embodiments include methods for customizing operation of the robotic vehicle for an operator. Such embodiments may include identifying a current operator of the robotic vehicle, configuring the robotic vehicle based on metadata associated with an operator profile for the operator, determining whether the operator has changed, and if so, identifying the new operator, deriving updated preference-based settings and performance-based settings for the new operator, and updating configurations of the robotic vehicle accordingly.
    Type: Application
    Filed: September 1, 2017
    Publication date: March 7, 2019
    Inventors: John Anthony DOUGHERTY, Rizwan AHMED, Stephen Marc CHAVES, Aleksandr KUSHLEYEV, Paul Daniel MARTIN, Daniel Warren MELLINGER, III, Michael Joshua SHOMIN, Michael Franco TAVEIRA, Matthew Hyatt TURPIN, Travis VAN SCHOYCK
  • Publication number: 20190073912
    Abstract: Embodiments include devices and methods operating a robotic vehicle. A robotic vehicle processor may detect an object posing an imminent risk of collision with the robotic vehicle. The robotic vehicle processor may determine a classification of the detected object. The robotic vehicle processor may manage a rotation of a rotor of the robotic vehicle prior to a collision based on the classification of the object.
    Type: Application
    Filed: September 1, 2017
    Publication date: March 7, 2019
    Inventors: Daniel Warren MELLINGER, III, Michael Joshua SHOMIN, Travis VAN SCHOYCK, Ross Eric KESSLER, John Anthony DOUGHERTY, Jonathan Paul DAVIS, Michael Franco TAVEIRA
  • Publication number: 20190068829
    Abstract: Embodiments include methods performed by a processor of a robotic vehicle for detecting and responding to obstructions to an on-board imaging device that includes an image sensor. Various embodiments may include causing the imaging device to capture at least one image, determining whether an obstruction to the imaging device is detected based at least in part on the at least one captured image, and, in response to determining that an obstruction to the imaging device is detected, identifying an area of the image sensor corresponding to the obstruction and masking image data received from the identified area of the image sensor.
    Type: Application
    Filed: January 3, 2018
    Publication date: February 28, 2019
    Inventors: Travis Van Schoyck, Daniel Warren Mellinger, III, Michael Joshua Shomin, Jonathan Paul Davis, Ross Eric Kessler, Michael Franco Taveira, Christopher Brunner, Stephen Marc Chaves, John Anthony Dougherty, Gary McGrath
  • Publication number: 20190068962
    Abstract: Embodiments include methods performed by a processor of a robotic vehicle for detecting and responding to defects on an on-board imaging device that includes an image sensor. Various embodiments may include causing the imaging device to capture at least one image, determining whether a defect to the imaging device is detected based at least in part on the at least one captured image, and, in response to determining that a defect to the imaging device is detected, identifying an area of the image sensor corresponding to the defect and masking image data received from the identified area of the image sensor.
    Type: Application
    Filed: August 24, 2017
    Publication date: February 28, 2019
    Inventors: Travis VAN SCHOYCK, Daniel Warren MELLINGER, III, Michael Joshua SHOMIN, Jonathan Paul DAVIS, Ross Eric KESSLER, Michael Franco TAVEIRA
  • Publication number: 20180321328
    Abstract: Various embodiments include devices and methods for mitigating the bias of a magnetometer resulting from operating various hardware components on a device such as a drone or a computing device. Various embodiments may improve the accuracy of magnetometer output by estimating the bias or magnetic interference caused by the hardware components based on a utilization or operating state of each hardware component, and adjusting the magnetometer output to compensate for the estimated bias.
    Type: Application
    Filed: May 2, 2017
    Publication date: November 8, 2018
    Inventors: Aleksandr KUSHLEYEV, Daniel Warren Mellinger, III, Travis Van Schoyck
  • Publication number: 20180312274
    Abstract: A lighting system for an unmanned autonomous vehicle (UAV) adapts to the environment around the UAV to ensure status notification lights are visible to an operator and/or abide by regulatory lighting requirements. A processor of the UAV may receive information from various sensors regarding environmental conditions and location of the UAV, and adjust a UAV lighting system to ensure visibility under the environmental conditions. Adjustments to the lighting system may include selection of light sources that are illuminated, the illumination intensity of particular light sources, the colors emitted by various light sources and other lighting configurations.
    Type: Application
    Filed: April 27, 2017
    Publication date: November 1, 2018
    Inventors: Ross Eric Kessler, Jonathan Paul Davis, John Anthony Dougherty, Daniel Warren Mellinger, III, Charles Wheeler Sweet, III, Donald Hutson
  • Patent number: 10041792
    Abstract: Various embodiments include a structure configured to at least partially expose a barometric altimeter of an unmanned aerial vehicle (UAV) to air pressure at a location on the UAV where there is reduced pressure perturbations caused by downwash of propellers. The structure may include a proximal portion configured to encompass a barometric altimeter of a circuit board of the UAV. The proximal portion may form at least a partial barrier between the barometric altimeter and a first ambient air pressure that is disturbed by a downwash from propellers of the UAV during flight of the UAV. The structure may also include a distal portion extending away from the barometric altimeter, with the distal portion configured to channel to the barometric altimeter a second ambient air pressure that is disturbed less than the first ambient air pressure by the downwash from propellers of the UAV during flight of the UAV.
    Type: Grant
    Filed: July 14, 2016
    Date of Patent: August 7, 2018
    Assignee: QUALCOMM Incorporated
    Inventors: Travis Van Schoyck, Jonathan Paul Davis, Daniel Warren Mellinger, III
  • Patent number: 10017237
    Abstract: Embodiments described herein relates to an Unmanned Aerial Vehicle (UAV) having vibration dampening and isolation capabilities, the UAV including a first frame portion, a second frame portion, and a third frame portion. Each of the first frame portion, the second frame portion, and the third frame portion is separated from one another. At least one first support member inelastically coupling the first frame portion and the third frame portion. At least one second support member elastically coupling the second frame portion and one or more of the first frame portion or the third frame portion to isolate the first frame portion and the third frame portion from vibration of the second frame portion.
    Type: Grant
    Filed: May 3, 2016
    Date of Patent: July 10, 2018
    Assignee: QUALCOMM Incorporated
    Inventors: Donald Bolden Hutson, Clayton Dumstorff, Jonathan Paul Davis, Paul Stewart Ferrell, Charles Wheeler Sweet, III, Travis Van Schoyck, Ross Eric Kessler, Aleksandr Kushleyev, Daniel Warren Mellinger, III
  • Patent number: 9977434
    Abstract: Some embodiments include methods performed by a processor associated with a wireless communication device for enabling an unmanned autonomous vehicle (UAV) to operate in an automatic user tracking mode. Such embodiments may include capturing image data of surroundings by a camera while the UAV is operating in the automatic user tracking mode, calculating estimated position information for the wireless communication device based on captured image data, and transmitting estimated position information to the UAV for use in tracking a user of the wireless communication device. Some embodiments include methods performed by a processor of a UAV for enabling the UAV to automatically follow a user. Such embodiments may include calculating a current position of the UAV, receiving from a user's wireless communication device estimated position information derived from image data captured by a camera of the wireless communication device, and determining whether an update to the UAV motion is required.
    Type: Grant
    Filed: June 23, 2016
    Date of Patent: May 22, 2018
    Assignee: QUALCOMM Incorporated
    Inventor: Daniel Warren Mellinger, III
  • Publication number: 20180094933
    Abstract: Various embodiments include methods for performing temperature calibration of a first temperature sensitive unit with an electronic device having a first processing unit that is thermally coupled to the first temperature sensitive unit. Various embodiments may include determining a current temperature of the first temperature sensitive unit, determining a processing load for the first processing unit based on the current temperature and a target temperature, applying the determined processing load to the first processing unit to vary a temperature of the first temperature sensitive unit, and determining a temperature bias for the first temperature sensitive unit at the temperature of the first temperature sensitive unit based on an output of the first temperature sensitive unit.
    Type: Application
    Filed: January 9, 2017
    Publication date: April 5, 2018
    Inventors: Aleksandr Kushleyev, Rizwan Ahmed, Daniel Warren Mellinger, III, Matthew Hyatt Turpin
  • Publication number: 20180032042
    Abstract: Various embodiments include dynamically controlling one or more parameters for obtaining and/or processing sensor data received from a sensor on a vehicle based on the speed of the vehicle. In some embodiments, parameters for obtaining and/or processing sensor data may be individually tuned (e.g., decreased, increased, or maintained) by leveraging differences in the level of quality, accuracy, confidence and/or other criteria in sensor data associated with particular missions/tasks performed using the sensor data. For example, the sensor data resolution required for collision avoidance may be less than the sensor data resolution required for inspection tasks, while the update rate required for inspection tasks may be less than the update rate required for collision avoidance. Parameters for obtaining and/or processing sensor data may be individually tuned based on the speed of the vehicle and/or the task or mission to improve consumption of power and/or other resources.
    Type: Application
    Filed: July 28, 2017
    Publication date: February 1, 2018
    Inventors: Matthew Hyatt Turpin, Stephen Marc Chaves, Daniel Warren Mellinger, III, John Anthony Dougherty, Michael Joshua Shomin, Charles Wheeler Sweet, III, Hugo Swart
  • Publication number: 20170373621
    Abstract: Embodiments include devices and methods for determining a spin direction of a motor of an unmanned aerial vehicle (UAV). A processor of the UAV may apply a first power to spin the motor in a first direction. The processor may select the first direction in response to determining that a detected rotational frequency-per-applied power in the first direction matches the expected rotational frequency-per-applied power. The processor may select the first direction in response to determining that a detected vertical motion is positive when the first power is applied in the first direction. The processor may also apply a second power to spin the motor in a second direction. The processor may determine whether a detected rotational frequency-per-applied power in the second direction matches the expected rotational frequency-per-applied power. The processor may determine whether a detected vertical motion is positive when the second power is applied in the second direction.
    Type: Application
    Filed: June 24, 2016
    Publication date: December 28, 2017
    Inventors: Ross Eric Kessler, Aleksandr Kushleyev, Daniel Warren Mellinger, III
  • Publication number: 20170191829
    Abstract: Various embodiments include a structure configured to at least partially expose a barometric altimeter of an unmanned aerial vehicle (UAV) to air pressure at a location on the UAV where there is reduced pressure perturbations caused by downwash of propellers. The structure may include a proximal portion configured to encompass a barometric altimeter of a circuit board of the UAV. The proximal portion may form at least a partial barrier between the barometric altimeter and a first ambient air pressure that is disturbed by a downwash from propellers of the UAV during flight of the UAV. The structure may also include a distal portion extending away from the barometric altimeter, with the distal portion configured to channel to the barometric altimeter a second ambient air pressure that is disturbed less than the first ambient air pressure by the downwash from propellers of the UAV during flight of the UAV.
    Type: Application
    Filed: July 14, 2016
    Publication date: July 6, 2017
    Inventors: Travis Van Schoyck, Jonathan Paul Davis, Daniel Warren Mellinger, III
  • Publication number: 20170183074
    Abstract: Embodiments described herein relates to an Unmanned Aerial Vehicle (UAV) having vibration dampening and isolation capabilities, the UAV including a first frame portion, a second frame portion, and a third frame portion. Each of the first frame portion, the second frame portion, and the third frame portion is separated from one another. At least one first support member inelastically coupling the first frame portion and the third frame portion. At least one second support member elastically coupling the second frame portion and one or more of the first frame portion or the third frame portion to isolate the first frame portion and the third frame portion from vibration of the second frame portion.
    Type: Application
    Filed: May 3, 2016
    Publication date: June 29, 2017
    Inventors: Donald Bolden Hutson, Clayton Dumstorff, Jonathan Paul Davis, Paul Stewart Ferrell, Charles Wheeler Sweet, III, Travis Van Schoyck, Ross Eric Kessler, Aleksandr Kushleyev, Daniel Warren Mellinger, III