Patents by Inventor Daniel Wirtz

Daniel Wirtz has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10441218
    Abstract: The invention relates to the field of magnetic resonance (MR) imaging. It concerns an oscillation applicator for MR rheology. It is an object of the invention to provide an oscillation applicator without restrictions regarding the usability for certain body regions. According to the invention, the oscillation applicator comprises at least one transducer which generates a reciprocating motion at a given frequency and a belt (19) mechanically coupled to the transducer, which belt (19) is designed to be wrapped around a patient's body (10). Moreover, the invention relates to a MR device (1) and to a method of MR imaging.
    Type: Grant
    Filed: May 30, 2013
    Date of Patent: October 15, 2019
    Assignee: KONINKLIJKE PHILIPS N.V.
    Inventors: Peter Vernickel, Christoph Leussler, Daniel Wirtz, Peter Mazurkewitz
  • Publication number: 20190307367
    Abstract: A respiratory monitoring device comprises: a light source (30) arranged to generate a projected shadow (S) of an imaging subject (P) positioned for imaging by an imaging device (8); a video camera (40) arranged to acquire video of the projected shadow; and an electronic processor (42) programmed to extract a position of an edge of the projected shadow as a function of time from the acquired video. In some embodiments, the light source is arranged to project the shadow onto a bore wall (20) of the imaging device, and the video camera is arranged to acquire video of the projected shadow on the bore wall. The electronic processor may be programmed to extract the position of the edge (E) as a one-dimensional function of time (46) based on the position of the edge in each frame of the acquired video and time stamps of the video frames.
    Type: Application
    Filed: October 11, 2017
    Publication date: October 10, 2019
    Inventors: JULIEN SENEGAS, SASCHA KRUEGER, DANIEL WIRTZ, VINCENT JEANNE, THIRUKAMARAN THANGARAJ KANAGASABAPATHI, GERRIT MARIA KERSTEN
  • Patent number: 10324145
    Abstract: A transverse-electromagnetic (TEM) radio-frequency coil (1) for a magnetic resonance system, especially for a magnetic resonance imaging system, includes a coil (1) in which at least one of the opposite end regions of the elongate strip section (4) of each TEM coil element (2) has a lateral extension (6) transverse to a longitudinal extent of the strip section (4). These lateral extensions (6) combine with strip sections (4) to form L- or U-shaped TEM coil elements (2) and provide ‘ring-like’ current contributions resulting in a reduction of the z-sensitivity compared with a conventional TEM coil. The result is a coil array having TEM coil elements (2) that provide smaller sensitivity profiles in the z-direction, yet preserve the characteristics of a well-defined RF ground, e.g. via an RF shield or screen (3). The reduced field of view in z-direction not only reduces noise reception but also reduces the SAR generated in those regions during transmission.
    Type: Grant
    Filed: October 3, 2012
    Date of Patent: June 18, 2019
    Assignee: KONINKLIJKE PHILIPS N.V.
    Inventors: Christoph Leussler, Daniel Wirtz
  • Patent number: 10251579
    Abstract: A medical apparatus (1100) comprising a magnetic resonance imaging system and an interventional device (300) comprising a shaft (302, 1014, 1120). The medical apparatus further comprises a toroidal magnetic resonance fiducial marker (306, 600, 800, 900, 1000, 1122) attached to the shaft. The shaft passes through a center point (610, 810, 908, 1006) of the fiducial marker. The medical apparatus further comprises machine executable instructions (1150, 1152, 1154, 1156, 1158) for execution by a processor. The instructions cause the processor to acquire (100, 200) magnetic resonance data, to reconstruct (102, 202) a magnetic resonance image (1142), and to receive (104, 204) the selection of a target volume (1118, 1144, 1168). The instructions further cause the processor to repeatedly: acquire (106, 206) magnetic resonance location data (1146) from the fiducial marker and render (108, 212) a view (1148, 1162) indicating the position of the shaft relative to the target zone.
    Type: Grant
    Filed: January 19, 2018
    Date of Patent: April 9, 2019
    Assignee: KONINKLIJKE PHILIPS N.V.
    Inventors: Steffen Weiss, Ronaldus Frederik Johannes Holthuizen, Sascha Krueger, Peter Koken, Daniel Wirtz, Thomas Erik Amthor, Falk Uhlemann
  • Patent number: 10245447
    Abstract: The invention provides for a medical apparatus (200, 300, 400) comprising: a magnetic resonance imaging system (202), a display (270), a processor (228), and a memory (234) for storing instructions for the processor. The instructions causes the processor to receive a brachytherapy treatment plan (240), acquire (100) planning magnetic resonance data (244), calculate (102) a catheter placement positions (246, 900, 902) and a catheter control commands (248) the brachytherapy catheters.
    Type: Grant
    Filed: September 25, 2012
    Date of Patent: April 2, 2019
    Assignee: Koninklijke Philips N.V.
    Inventors: Thomas Erik Amthor, Falk Uhlemann, Sascha Krueger, Steffen Weiss, Ronaldus Frederik Johannes Holthuizen, Daniel Wirtz, Peter Koken
  • Patent number: 10222433
    Abstract: The present invention provides a receive coil unit (140) comprising a receive coil array (142) for use in a magnetic resonance imaging system (110) with multiple antenna units (144) sensitive to magnetic resonance signals, i.e. antenna units (144) sensitive to B-field signals, whereby each antenna unit (144) comprises a coil element (146) sensitive to B-field signals, and each antenna unit (144) comprises an E-field antenna (148) sensitive to E-field signals. The present invention also provides a magnetic resonance imaging system (110) comprising a receive coil unit (140) with a receive coil array (142) having multiple antenna units (144) sensitive to magnetic resonance signals, i.e. antenna units (144) sensitive to B-field signals, whereby the receive coil unit (140) is provided as a receive coil unit (140) as specified above.
    Type: Grant
    Filed: October 16, 2015
    Date of Patent: March 5, 2019
    Assignee: KONINKLIJKE PHILIPS N.V.
    Inventors: Christoph Leussler, Daniel Wirtz
  • Patent number: 10185015
    Abstract: A handheld oscillation applicator (40) for use in a magnetic resonance rheology imaging system (10), for applying mechanical oscillations to at least a portion of a subject of interest (20), the handheld oscillation applicator (40) comprising a housing (54), at least one transducer unit (48) configured to output mechanical energy, a piston (68) that is mechanically linked to the at least one transducer unit (48), the piston (68) including a first end (70), a second end (72), and an opening (74) that extends between the first end (70) and the second end (72), wherein the housing (54) comprises at least one opening (60), and the at least one opening (60) of the housing (54) and the opening (74) of the piston (68) at least partially overlap with regard to a housing opening direction (66) defined by an opening center (62) of the opening (60) of the housing (54) at a first surface (56) and an opening center (64) of the opening (60) of the housing (54) at a second surface (58); and an oscillation applicator system
    Type: Grant
    Filed: January 24, 2015
    Date of Patent: January 22, 2019
    Assignee: Koninklijke Philips N.C.
    Inventors: Daniel Wirtz, Peter Mazurkewitz, Christoph Leussler, Peter Vernickel
  • Patent number: 10073154
    Abstract: The invention provides for a multi-element transmit coil (100) for a magnetic resonance imaging system (300). The multi-element transmit coil comprises multiple surface coil elements (102) with a coil circuit (104) that has an integrated a radio-frequency sensor (106, 604, 704, 804). The multi-element transmit coil further comprises a power monitoring unit (108) with an analog-to-digital converter (808). The power monitoring unit comprises a processor connected to each analog to digital converter that is operable for receiving a radio-frequency measurement for generating specific absorption rate data (348) for each of the multiple surface coil elements. The multi-element transmit coil further comprises an optical data transmission system (110) connected to the processor. The optical data transmission system is operable for connecting to a magnetic resonance imaging system controller (312, 330).
    Type: Grant
    Filed: March 13, 2014
    Date of Patent: September 11, 2018
    Assignee: KONINKLIJKE PHILIPS N.V.
    Inventors: Christoph Leussler, Daniel Wirtz
  • Patent number: 10004424
    Abstract: An endorectal coil (1) includes a tube (40), a spreader (44), and one or more electrically conductive elements (64). The tube (40) is configured for insertion into the rectum (42). The spreader (44) is configured to be positioned at a distal end of the tube (40) and mechanically spread to compress surrounding tissue after the tube (40) is inserted. The one or more electrically conductive elements (64) are tuned to receive magnetic resonance data disposed on at least one of the tube (40), the spreader (44), and adjacent the tube and spreader.
    Type: Grant
    Filed: June 5, 2017
    Date of Patent: June 26, 2018
    Assignee: KONINKLIJKE PHILIPS N.V.
    Inventors: Daniel Wirtz, Peter Mazurkewitz, Christoph Leussler
  • Publication number: 20180160934
    Abstract: A medical apparatus (1100) comprising a magnetic resonance imaging system and an interventional device (300) comprising a shaft (302, 1014, 1120). The medical apparatus further comprises a toroidal magnetic resonance fiducial marker (306, 600, 800, 900, 1000, 1122) attached to the shaft. The shaft passes through a center point (610, 810, 908, 1006) of the fiducial marker. The medical apparatus further comprises machine executable instructions (1150, 1152, 1154, 1156, 1158) for execution by a processor. The instructions cause the processor to acquire (100, 200) magnetic resonance data, to reconstruct (102, 202) a magnetic resonance image (1142), and to receive (104, 204) the selection of a target volume (1118, 1144, 1168). The instructions further cause the processor to repeatedly: acquire (106, 206) magnetic resonance location data (1146) from the fiducial marker and render (108, 212) a view (1148, 1162) indicating the position of the shaft relative to the target zone.
    Type: Application
    Filed: January 19, 2018
    Publication date: June 14, 2018
    Inventors: Steffen Weiss, Ronaldus Frederik Johannes Holthuizen, Sascha Krueger, Peter Koken, Daniel Wirtz, Thomas Erik Amthor, Alk Uhlemann
  • Patent number: 9968277
    Abstract: A medical apparatus (1100) comprising a magnetic resonance imaging system and an interventional device (300) comprising a shaft (302, 1014, 1120). The medical apparatus further comprises a toroidal magnetic resonance fiducial marker (306, 600, 800, 900, 1000, 1122) attached to the shaft. The shaft passes through a center point (610, 810, 908, 1006) of the fiducial marker. The medical apparatus further comprises machine executable instructions (1150, 1152, 1154, 1156, 1158) for execution by a processor. The instructions cause the processor to acquire (100, 200) magnetic resonance data, to reconstruct (102, 202) a magnetic resonance image (1142), and to receive (104, 204) the selection of a target volume (1118, 1144, 1168). The instructions further cause the processor to repeatedly: acquire (106, 206) magnetic resonance location data (1146) from the fiducial marker and render (108, 212) a view (1148, 1162) indicating the position of the shaft relative to the target zone.
    Type: Grant
    Filed: April 4, 2012
    Date of Patent: May 15, 2018
    Assignee: KONINKLIJKE PHILIPS N.V.
    Inventors: Steffen Weiss, Ronaldus Frederik Johannes Holthuizen, Sascha Krueger, Peter Koken, Daniel Wirtz, Thomas Erik Amthor, Falk Uhlemann
  • Patent number: 9952296
    Abstract: A magnetic resonance method comprises applying a radio frequency excitation in an examination region (14), measuring a magnetic resonance signal generated by the applied radio frequency excitation in a subject (16) in the examination region, monitoring a radio frequency parameter during the applying, and evaluating subject safety based on the monitoring. A magnetic resonance safety monitor (40) comprises an analyzer (42, 44, 46, 50) configured to (i) receive a radio frequency signal during magnetic resonance excitation, (ii) extract a radio frequency parameter from the received radio frequency signal, and (iii) evaluate subject safety based on the extracted radio frequency parameter, and a remediation module (54) configured to perform a remediation of the magnetic resonance excitation responsive to the evaluation (iii) indicating a potentially unsafe condition.
    Type: Grant
    Filed: December 22, 2008
    Date of Patent: April 24, 2018
    Assignee: KONINKLIJKE PHILIP N.V.
    Inventors: Sascha Krueger, Daniel Wirtz, Steffen Weiss
  • Patent number: 9933503
    Abstract: The invention provides for a medical instrument (200, 400, 500) comprising a magnetic resonance imaging system (202), a transducer (222) for mechanically vibrating at least a portion of the subject within the imaging zone. Instructions cause a processor (236) controlling the medical instrument to: control (100) the transducer to vibrate; control (102) the magnetic resonance imaging system to repeatedly acquire the magnetic resonance data (252) using a first spatially encoding pulse sequence (250); control (104) the magnetic resonance imaging system to acquire navigator data (256) using a second spatially encoding pulse sequence (254); construct (106) a set of navigator profiles (258, 804, 904, 1004, 1108, 1208, 1308) using the navigator data; determine (108) at least one parameter (260) descriptive of transducer vibrations using the set of navigator profiles; and reconstruct (110) at least one magnetic resonance rheology image (262) from the magnetic resonance data.
    Type: Grant
    Filed: September 9, 2013
    Date of Patent: April 3, 2018
    Assignee: KONINKLIJKE PHILIPS N.V.
    Inventors: Peter Vernickel, Daniel Wirtz, Christoph Leussler, Peter Mazurkewitz
  • Publication number: 20180014745
    Abstract: A contact-free method of determining biometric parameters and physiological parameters of a subject of interest (20) to be examined by a medical imaging modality (10), comprising steps of taking (72) a picture by a first digital camera (52) including a total view of an examination table (44); applying (74) a computer vision algorithm or an image processing algorithm to the picture for determining a biometric parameter of the subject of interest (20) in relation to the examination table (44); taking (78) at least one picture with a second digital camera (58), whose field of view (60) includes a region of the subject of interest (20) that is related to the at least one determined biometric parameter; using data indicative of the determined biometric parameter to identify (82) a subset of pixels of the at least one picture taken by the second digital camera (58) that define a region of interest (64) from which at least one physiological parameter of the subject of interest (20) is to be determined, taking (84) a
    Type: Application
    Filed: January 14, 2016
    Publication date: January 18, 2018
    Inventors: JULIEN SENEGAS, DANIEL WIRTZ, SASCHA KRUEGER, VINCENT JEANNE, THIRUKUMARAN THANGARAJ KANAGASABAPATHI, JOERG SABCZYNSKI, PETER FORTHMANN
  • Patent number: 9869735
    Abstract: A magnetic resonance imaging system (300, 400) acquires magnetic resonance data (342). The magnetic resonance imaging system includes a coil assembly (319) configured for radiating and/or receiving radio frequency energy from an imaging zone. The coil assembly has a first surface (315) configured for being directed towards the imaging zone and includes at least one coil element (317). The coil assembly further comprises a radio frequency shield (319) switchable between an RF blocking state (804) and an RF transparent state (802). The at least one coil element is between the first surface and the radio frequency shield. The switchable radio frequency shield includes at least two conductive elements (322). The radio frequency shield includes at least one radio frequency switch (324) configured for electrically connecting the at least two conductive elements in the blocking state and disconnecting the at least two conductive elements in the transparent state.
    Type: Grant
    Filed: October 3, 2012
    Date of Patent: January 16, 2018
    Assignee: KONINKLIJKE PHILIPS N.V.
    Inventors: Christoph Leussler, Daniel Wirtz
  • Publication number: 20170311887
    Abstract: Patient headphones (50) for use in a medical scanning modality, comprising a frame member (52), two ear cups (54) that, in an operational state of the patient headphones (50), are arranged to be in contact with one of the patient's ears, and a sensor system (60), the sensor system (60) including optical emitters (64) that are configured for directing electromagnetic radiation to a portion of the patient's skin, and optical sensors (68) that are configured for receiving the electromagnetic radiation being returned from the portion of the patient's skin, and for providing an output signal that corresponds to the received electromagnetic radiation, wherein the output signal is indicative of at least one physiological parameter of the patient and serves as a basis for determining the at least one physiological parameter of the patient; —a patient headphones system (48) for use in a medical scanning modality (10), comprising an embodiment of such patient headphones (50) and a data acquisition and analysis unit (76
    Type: Application
    Filed: November 13, 2015
    Publication date: November 2, 2017
    Inventors: CHRISTOPH LEUSSLER, DANIEL WIRTZ, SASCHA KRUEGER
  • Publication number: 20170307701
    Abstract: The present invention provides a receive coil unit (140) comprising a receive coil array (142) for use in a magnetic resonance imaging system (110) with multiple antenna units (144) sensitive to magnetic resonance signals, i.e. antenna units (144) sensitive to B-field signals, whereby each antenna unit (144) comprises a coil element (146) sensitive to B-field signals, and each antenna unit (144) comprises an E-field antenna (148) sensitive to E-field signals. The present invention also provides a magnetic resonance imaging system (110) comprising a receive coil unit (140) with a receive coil array (142) having multiple antenna units (144) sensitive to magnetic resonance signals, i.e. antenna units (144) sensitive to B-field signals, whereby the receive coil unit (140) is provided as a receive coil unit (140) as specified above.
    Type: Application
    Filed: October 16, 2015
    Publication date: October 26, 2017
    Inventors: CHRISTOPH LEUSSLER, DANIEL WIRTZ
  • Publication number: 20170265773
    Abstract: An endorectal coil (1) includes a tube (40), a spreader (44), and one or more electrically conductive elements (64). The tube (40) is configured for insertion into the rectum (42). The spreader (44) is configured to be positioned at a distal end of the tube (40) and mechanically spread to compress surrounding tissue after the tube (40) is inserted. The one or more electrically conductive elements (64) are tuned to receive magnetic resonance data disposed on at least one of the tube (40), the spreader (44), and adjacent the tube and spreader.
    Type: Application
    Filed: June 5, 2017
    Publication date: September 21, 2017
    Inventors: Daniel Wirtz, Peter Mazurkewitz, Christoph Leussler
  • Patent number: 9668670
    Abstract: An endorectal coil (1) includes a tube (40), a spreader (44), and one or more electrically conductive elements (64). The tube (40) is configured for insertion into the rectum (42). The spreader (44) is configured to be positioned at a distal end of the tube (40) and mechanically spread to compress surrounding tissue after the tube (40) is inserted. The one or more electrically conductive elements (64) are tuned to receive magnetic resonance data disposed on at least one of the tube (40), the spreader (44), and adjacent the tube and spreader.
    Type: Grant
    Filed: August 5, 2013
    Date of Patent: June 6, 2017
    Assignee: Koninklijke Philips N.V.
    Inventors: Daniel Wirtz, Peter Mazurkewitz, Christoph Leussler
  • Patent number: 9638769
    Abstract: A fiducial position marker (1) for use in a magnetic resonance (MR) imaging apparatus is disclosed for exciting and/or receiving MR signals in/from a local volume which at least substantially surrounds or adjoins the position marker, in order to determine and/or image from these MR signals the position of the position marker in an MR image of an examination object. Such a position marker (1) is especially used for determining and/or imaging a position of an interventional or non-interventional instrument to which the position marker may be attached, like a catheter, a surgical device, a biopsy needle, a pointer, a stent or another invasive or any non-invasive device in an MR image of an examination object. Further, a position marker system comprising such a position marker (1) and a circuit arrangement (5, 6, 6a, 8) for driving the position marker (1) for exciting MR signals and/or for processing MR signals received by the position marker is disclosed.
    Type: Grant
    Filed: July 16, 2012
    Date of Patent: May 2, 2017
    Assignee: KONINKLIJKE PHILIPS N.V.
    Inventors: Daniel Wirtz, Christoph Leussler, Sascha Krueger