Patents by Inventor Daniel Yeuching Wei

Daniel Yeuching Wei has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20170080520
    Abstract: An inertia welding method includes: mounting two workpieces in an inertia welding apparatus; rotating a least one of the workpieces, so as to produce relative rotation of the two workpieces at a predetermined RPM; forcing together the two workpieces with predetermined first weld load so as to cause frictional heating at an interface therebetween; maintaining the first weld load for a first interval; forcing together the two workpieces with a predetermined second weld load greater than the first weld load so as to cause material upset and bonding between the two workpieces, while the rotation brakes to a stop, terminating the weld process; wherein the first and second weld loads are selected so as a produce a specific temperature-distance profile in a selected one of the workpieces, at the termination of the weld process.
    Type: Application
    Filed: September 18, 2015
    Publication date: March 23, 2017
    Inventors: Andrew Ezekiel Wessman, Timothy Joseph Trapp, Christopher Lee English, Daniel Yeuching Wei
  • Patent number: 9518310
    Abstract: A gamma prime nickel-base superalloy and components formed therefrom that exhibit improved high-temperature dwell capabilities, including creep and hold time fatigue crack growth behavior. A particular example of a component is a powder metallurgy turbine disk of a gas turbine engine. The gamma-prime nickel-base superalloy contains, by weight: 16.0 to 30.0% cobalt; 9.5 to 12.5% chromium; 4.0 to 6.0% tantalum; 2.0 to 4.0% aluminum; 2.0 to 3.4% titanium; 3.0 to 6.0% tungsten; 1.0 to 4.0% molybdenum; 1.5 to 3.5% niobium; up to 1.0% hafnium; 0.02 to 0.20% carbon; 0.01 to 0.05% boron; 0.02 to 0.10% zirconium; the balance essentially nickel and impurities. The superalloy has a W+Nb?Cr value of at least ?6, is free of observable amounts of sigma and eta phases, and exhibits a time to 0.2% creep at 1300° F. and 100 ksi of at least 1000 hours.
    Type: Grant
    Filed: July 23, 2013
    Date of Patent: December 13, 2016
    Assignee: General Electric Company
    Inventors: David Paul Mourer, Richard DiDomizio, Timothy Hanlon, Daniel Yeuching Wei, Andrew Ezekiel Wessman, Kenneth Rees Bain, Andrew Martin Powell
  • Patent number: 9156113
    Abstract: Processes for fabricating components to have two or more regions with different grain structures, and components produced by such processes. The processes entail performing at least one forging step on a preform to produce a profile having at least a first portion corresponding to the first region of the component. The preform is formed of a precipitation-strengthened alloy having a solvus temperature, and the at least one forging step comprises a nonfinal forging step performed at a first strain rate and at a first subsolvus temperature that is below the solvus temperature of the alloy. A subsequent forging step is performed on the profile to produce a final profile comprising the first portion and a second portion corresponding to the second region of the component.
    Type: Grant
    Filed: June 3, 2011
    Date of Patent: October 13, 2015
    Assignee: General Electric Company
    Inventors: Andrew Ezekiel Wessman, David Paul Mourer, Daniel Yeuching Wei
  • Publication number: 20140205449
    Abstract: A gamma prime nickel-base superalloy and components formed therefrom that exhibit improved high-temperature dwell capabilities, including creep and hold time fatigue crack growth behavior. A particular example of a component is a powder metallurgy turbine disk of a gas turbine engine. The gamma-prime nickel-base superalloy contains, by weight: 16.0 to 30.0% cobalt; 9.5 to 12.5% chromium; 4.0 to 6.0% tantalum; 2.0 to 4.0% aluminum; 2.0 to 3.4% titanium; 3.0 to 6.0% tungsten; 1.0 to 4.0% molybdenum; 1.5 to 3.5% niobium; up to 1.0% hafnium; 0.02 to 0.20% carbon; 0.01 to 0.05% boron; 0.02 to 0.10% zirconium; the balance essentially nickel and impurities. The superalloy has a W+Nb?Cr value of at least ?6, is free of observable amounts of sigma and eta phases, and exhibits a time to 0.2% creep at 1300° F. and 100 ksi of at least 1000 hours.
    Type: Application
    Filed: July 23, 2013
    Publication date: July 24, 2014
    Applicant: General Electric Company
    Inventors: David Paul Mourer, Richard DiDomizio, Timothy Hanlon, Daniel Yeuching Wei, Andrew Ezekiel Wessman, Kenneth Rees Bain, Andrew Martin Powell
  • Publication number: 20120305143
    Abstract: Processes for fabricating components to have two or more regions with different grain structures, and components produced by such processes. The processes entail performing at least one forging step on a preform to produce a profile having at least a first portion corresponding to the first region of the component. The preform is formed of a precipitation-strengthened alloy having a solvus temperature, and the at least one forging step comprises a nonfinal forging step performed at a first strain rate and at a first subsolvus temperature that is below the solvus temperature of the alloy. A subsequent forging step is performed on the profile to produce a final profile comprising the first portion and a second portion corresponding to the second region of the component.
    Type: Application
    Filed: June 3, 2011
    Publication date: December 6, 2012
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: Andrew Ezekiel Wessman, David Paul Mourer, Daniel Yeuching Wei
  • Publication number: 20120051919
    Abstract: A forging preform for a turbine rotor disk is disclosed. The preform includes a body of a superalloy material having a mass of about 5000 lbs or more, the superalloy material having a substantially homogeneous grain morphology and an ASTM average grain size of 10 or smaller. 5. A turbine rotor disk is also disclosed. The disk includes a substantially cylindrical disk of a superalloy material having a mass of about 5000 lbs or more, the superalloy material having a substantially homogeneous grain morphology and an ASTM average grain size of about 10 or smaller. A method of making a turbine rotor disk is also disclosed. The method includes providing a superalloy powder material and pressing the superalloy powder material to form a forging preform for a turbine rotor disk.
    Type: Application
    Filed: August 31, 2010
    Publication date: March 1, 2012
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: Raymond Joseph Stonitsch, George Albert Goller, Joseph Jay Jackson, David Paul Mourer, Daniel Yeuching Wei