Patents by Inventor Daniela Florentina BOGORIN

Daniela Florentina BOGORIN has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20210328125
    Abstract: Techniques for designing and fabricating quantum circuitry, including a coplanar waveguide (CPW), for quantum applications are presented. With regard to a CPW, a central conductor and two return conductor lines can be formed on a dielectric substrate, with one return conductor line on each side of the central conductor and separated from it by a space. The central conductor can have bridge portions that can be raised a desired distance above the substrate and base conductor portions situated between the bridge portions and in contact with the surface of the substrate; and/or portions of the substrate underneath the bridge portions of the central conductor can be removed such that the bridge portions, whether raised or unraised, can be the desired distance above the surface of the remaining substrate, and the base conductor portions can be in contact with other portions of the surface of the substrate that were not removed.
    Type: Application
    Filed: April 16, 2020
    Publication date: October 21, 2021
    Inventors: Salvatore Bernardo Olivadese, Sarunya Bangsaruntip, Daniela Florentina Bogorin, Nicholas Torleiv Bronn, Sean Hart, Patryk Gumann
  • Publication number: 20210201187
    Abstract: Systems, computer-implemented methods, and computer program products that can facilitate determining a state of a qubit are described. According to an embodiment, a system can comprise a memory that stores computer executable components and a processor that executes the computer executable components stored in the memory. The computer executable components can comprise a relation determining component that can determine relation of a status signal of a quantum computing device to a noise value of the quantum computing device. The system can further include an operation time estimator that can estimate an operation time for the quantum computing device based on the relation of the status signal to the noise value.
    Type: Application
    Filed: December 26, 2019
    Publication date: July 1, 2021
    Inventors: Salvatore Bernardo Olivadese, Daniela Florentina Bogorin, Nicholas Torleiv Bronn, Sean Hart, Patryk Gumann
  • Publication number: 20210076530
    Abstract: Devices, systems, methods, and computer-implemented methods to facilitate employing thermalizing materials in an enclosure for quantum computing devices are provided. According to an embodiment, a system can comprise a quantum computing device and an enclosure having the quantum computing device disposed within the enclosure. The system can further comprise a thermalizing material disposed within the enclosure, with the thermalizing material being adapted to thermally link a cryogenic device to the quantum computing device.
    Type: Application
    Filed: September 5, 2019
    Publication date: March 11, 2021
    Inventors: Sean Hart, Daniela Florentina Bogorin, Nicholas Torleiv Bronn, Patryk Gumann, Salvatore Bernardo Olivadese
  • Publication number: 20210068320
    Abstract: Techniques regarding shielding one or more superconducting devices are provided. For example, one or more embodiments described herein can comprise an apparatus, which can comprise a multi-layer enclosure that shields a superconducting device from a magnetic field and radiation. Further, the multi-layer enclosure can comprise a superconducting material layer that can have a thickness that inhibits a penetration of the multi-layer enclosure by the magnetic field. The multi-layer enclosure can also comprise a metal layer adjacent to the superconducting material layer. The metal layer can have a high thermal conductivity that achieves thermalization with the superconducting material layer. Moreover, the multi-layer enclosure can comprise a radiation shield layer adjacent to the superconducting material layer.
    Type: Application
    Filed: August 30, 2019
    Publication date: March 4, 2021
    Inventors: Daniela Florentina Bogorin, Sean Hart, Patryk Gumann, Nicholas Torleiv Bronn, Salvatore Bernardo Olivadese, Oblesh Jinka
  • Publication number: 20210003456
    Abstract: Techniques regarding determining and/or analyzing temperature distributions experienced by quantum computer devices during operation are provided. For example, one or more embodiments described herein can comprise a system, which can comprise a memory that can store computer executable components. The system can also comprise a processor, operably coupled to the memory, and that can execute the computer executable components stored in the memory. The computer executable components can comprise a region component that can define a plurality of temperature regions from a quantum computing device layout. The computer executable component can also comprise a map component that can generate a map that characterizes a temperature distribution by determining at least one temperature achieved within the plurality of temperature regions during an operation of the quantum computing device layout.
    Type: Application
    Filed: July 2, 2019
    Publication date: January 7, 2021
    Inventors: Salvatore Bernardo Olivadese, Daniela Florentina Bogorin, Nicholas Torleiv Bronn, Sean Hart, Patryk Gumann
  • Publication number: 20210003457
    Abstract: Techniques regarding determining the temperature of one or more quantum computing devices are provided. For example, one or more embodiments described herein can comprise a system, which can comprise a temperature component that can determine a temperature of a superconducting resonator based on a frequency shift exhibited by the superconducting resonator due to a change in kinetic inductance with a change in temperature.
    Type: Application
    Filed: July 2, 2019
    Publication date: January 7, 2021
    Inventors: Salvatore Bernardo Olivadese, Daniela Florentina Bogorin, Nicholas Torleiv Bronn, Sean Hart, Patryk Gumann
  • Publication number: 20200404806
    Abstract: A thermalization structure is formed using a cover configured with a set of pillars, the cover being a part of a cryogenic enclosure of a low temperature device (LTD). A chip including the LTD is configured with a set of cavities, a cavity in the set of cavities having a cavity profile. A pillar from the set of pillars and corresponding to the cavity has a pillar profile such that the pillar profile causes the pillar to couple with the cavity of the cavity profile within a gap tolerance to thermally couple the chip to the cover for heat dissipation in a cryogenic operation of the chip.
    Type: Application
    Filed: June 19, 2019
    Publication date: December 24, 2020
    Applicant: International Business Machines Corporation
    Inventors: Oblesh Jinka, Salvatore Bernardo Olivadese, Sean Hart, Nicholas Torleiv Bronn, Jerry M. Chow, Markus Brink, Patryk Gumann, Daniela Florentina Bogorin
  • Patent number: 9771656
    Abstract: This disclosure relates to methods that include depositing a first component and a second component to form a film including a plurality of nanostructures, and coating the nanostructures with a hydrophobic layer to render the film superhydrophobic. The first component and the second component can be immiscible and phase-separated during the depositing step. The first component and the second component can be independently selected from the group consisting of a metal oxide, a metal nitride, a metal oxynitride, a metal, and combinations thereof. The films can have a thickness greater than or equal to 5 nm; an average surface roughness (Ra) of from 90 to 120 nm, as measured on a 5 ?m×5 ?m area; a surface area of at least 20 m2/g; a contact angle with a drop of water of at least 120 degrees; and can maintain the contact angle when exposed to harsh conditions.
    Type: Grant
    Filed: August 28, 2012
    Date of Patent: September 26, 2017
    Assignee: UT-Battelle, LLC
    Inventors: Tolga Aytug, Mariappan Parans Paranthaman, John T. Simpson, Daniela Florentina Bogorin
  • Publication number: 20140065368
    Abstract: This disclosure relates to methods that include depositing a first component and a second component to form a film including a plurality of nanostructures, and coating the nanostructures with a hydrophobic layer to render the film superhydrophobic. The first component and the second component can be immiscible and phase-separated during the depositing step. The first component and the second component can be independently selected from the group consisting of a metal oxide, a metal nitride, a metal oxynitride, a metal, and combinations thereof. The films can have a thickness greater than or equal to 5 nm; an average surface roughness (Ra) of from 90 to 120 nm, as measured on a 5 ?m×5 ?m area; a surface area of at least 20 m2/g; a contact angle with a drop of water of at least 120 degrees; and can maintain the contact angle when exposed to harsh conditions.
    Type: Application
    Filed: August 28, 2012
    Publication date: March 6, 2014
    Applicant: UT-BATTELLE, LLC
    Inventors: Tolga AYTUG, Mariappan Parans PARANTHAMAN, John T. SIMPSON, Daniela Florentina BOGORIN