Patents by Inventor Daniele Mauri

Daniele Mauri has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 6896975
    Abstract: A spin-valve sensor with pinning layers comprising multiple antiferromagnetic films is disclosed. The multiple antiferromagnetic films are preferably selected from the same Mn-based (Ni—Mn or Pt—Mn) alloy system. The Mn content of the antiferromagnetic film in contact with the reference layer of the spin-valve sensor is selected in order to maximize its exchange coupling to the reference layer, thereby providing a high unidirectional anisotropy field for proper sensor operation. The Mn content of the other antiferromagnetic films not in contact with the reference layer of the spin-valve sensor is reduced in order to maximize the thermal stability and corrosion resistance of the spin-valve sensor for robust sensor operation at high temperatures in disk drive environments.
    Type: Grant
    Filed: January 4, 2002
    Date of Patent: May 24, 2005
    Assignee: International Business Machines Corporation
    Inventors: Tsann Lin, Daniele Mauri
  • Patent number: 6876525
    Abstract: A giant magnetoresistance (GMR) magnetic head that includes a GMR read sensor with a stitched longitudinal bias (LB) stack. The GMR read sensor includes seed, pinning, pinned, spacer, sense and cap layers in a read region, and its seed and pinning layers are extended into two side regions. The LB stack is fabricated on the pinning layer in the two side regions and includes separation, seed and LB layers. The separation layer, preferably made of an amorphous film, separates the pinning layer from the seed and LB layers and thereby prevents unwanted crystalline effects of the pinning layer. Monolayer photoresist patterning and chemical mechanical polishing may be incorporated into the fabrication process of the GMR head to attain uniform thicknesses of the separation, seed and LB layers, and to align the midplane of the LB layer at the same horizontal level as the midplane of the sense layer.
    Type: Grant
    Filed: August 27, 2002
    Date of Patent: April 5, 2005
    Assignee: International Business Machines Corporation
    Inventors: Tsann Lin, Daniele Mauri
  • Patent number: 6873499
    Abstract: A read head has a flux guide layer that is immediately adjacent (abuts) the back edge of a read sensor. The flux guide layer is made of a high resistance soft magnetic material that conducts magnetic flux from the back edge of the read sensor so that the magnetic response at the back edge of the read sensor is significantly higher than zero. This increases the efficiency of the read sensor. The material for the flux guide layer is A-B-C where A is selected from the group Fe and Co, B is selected from the group Hf, Y, Ta and Zr and C is selected from the group O and N. In a preferred embodiment A-B-C is Fe—Hf—O and the Ms? of the flux guide layer is greater than 50 times the Ms? of the read sensor layer where the read sensor layer is NiFe, Ms is saturation magnetization and ? is resistivity. Because of the flux guides high resistance current shunting losses are nearly eliminated.
    Type: Grant
    Filed: January 24, 2001
    Date of Patent: March 29, 2005
    Assignee: International Business Machines Corporation
    Inventors: Wen Yaung Lee, Tsann Lin, Daniele Mauri, David John Seagle
  • Publication number: 20050061658
    Abstract: A dual magnetic tunnel junction (MTJ) sensor is provided with a longitudinal bias stack sandwiched between a first MTJ stack and a second MTJ stack. The longitudinal bias stack comprises an antiferromagnetic (AFM) layer sandwiched between first and second ferromagnetic layers. The first and second MTJ stacks comprise antiparallel (AP)-pinned layers pinned by AFM layers made of an AFM material having a higher blocking temperature than the AFM material of the bias stack allowing the AP-pinned layers to be pinned in a transverse direction and the bias stack to be pinned in a longitudinal direction. The demagnetizing fields of the two AP-pinned layers cancel each other and the bias stack provides flux closures for the sense layers of the first and second MTJ stacks.
    Type: Application
    Filed: November 5, 2004
    Publication date: March 24, 2005
    Applicant: International Business Machines Corporation
    Inventors: Tsann Lin, Daniele Mauri
  • Publication number: 20050024789
    Abstract: The GMR read head includes a GMR read sensor and a longitudinal bias (LB) stack in a read region, and the GMR read sensor, the LB stack and a first conductor layer in two overlay regions. In its fabrication process, the GMR read sensor, the LB stack and the first conductor layer are sequentially deposited on a bottom gap layer. A monolayer photoresist is deposited, exposed and developed in order to open a read trench region for the definition of a read width, and RIE is then applied to remove the first conductor layer in the read trench region. After liftoff of the monolayer photoresist, bilayer photoresists are deposited, exposed and developed in order to mask the read and overlay regions, and a second conductor layer is deposited in two unmasked side regions. As a result, side reading is eliminated and a read width is sharply defined by RIE.
    Type: Application
    Filed: August 24, 2004
    Publication date: February 3, 2005
    Inventors: Tsann Lin, Daniele Mauri
  • Publication number: 20050009211
    Abstract: A tunneling magnetoresistive (TMR) sensor includes a first ferromagnetic (FM) layer (e.g. a sense or reference layer), a barrier layer formed over the first FM layer, and a second FM layer (e.g. a sense or reference layer) formed over the barrier layer. The barrier layer is made of magnesium-oxide (Mg—O). The sense and reference layers of the TMR sensor exhibit controlled magnetic properties, the barrier layer provides a low junction resistance-area product, and the TMR sensor exhibits a high TMR coefficient. The junction resistance is sufficiently low so as to prevent electrostatic discharge (ESD) damage to submicron-sized TMR sensors used for magnetic recording at ultrahigh densities.
    Type: Application
    Filed: July 28, 2004
    Publication date: January 13, 2005
    Inventors: Tsann Linn, Daniele Mauri
  • Patent number: 6841395
    Abstract: A fabrication process for a tunneling magnetoresistance (TMR) sensor is disclosed. In particular, a unique method of forming a barrier layer of the TMR sensor is utilized so that the TMR sensor exhibits good magnetic and TMR properties. In one particular example, the barrier layer is formed by depositing a metallic film in an argon gas in a DC magnetron sputtering module, depositing an oxygen-doped metallic film in mixed xenon and oxygen gases in an ion-beam sputtering module, and oxidizing these films in an oxygen gas in an oxygen treatment module. This three-step barrier layer formation process minimizes oxygen penetration into ferromagnetic (FM) sense and pinned layers of the TMR sensor and optimally controls oxygen doping into the barrier layer. As a result, the FM sense and pinned layers exhibit controlled magnetic properties, the barrier layer provides a low junction resistance-area product, and the TMR sensor exhibits a high TMR coefficient.
    Type: Grant
    Filed: November 25, 2002
    Date of Patent: January 11, 2005
    Assignee: International Business Machines Corporation
    Inventors: Tsann Linn, Daniele Mauri
  • Publication number: 20040264067
    Abstract: A read head for use with an interconnect transmission line having a characteristic impedance of Z0 includes a tunnel valve device and a shunt resistor RS that is connected in parallel across the tunnel valve device. The tunnel valve device has a device resistance RT corresponding to a predetermined resistance-area (RA) product. The value of the shunt resistance is based on the parallel combination of RT and RS substantially equaling the characteristic impedance Z0 of the interconnect transmission line. The predetermined resistance-area (RA) product is about equal to at least about 10 Ohms-&mgr;m2. Alternatively, the predetermined resistance-area (RA) product is about equal to a “corner” value of RAc for the tunnel valve device.
    Type: Application
    Filed: June 30, 2003
    Publication date: December 30, 2004
    Applicant: Hitachi Global Storage Technologies
    Inventors: Tsann Lin, Daniele Mauri, Neil Smith
  • Patent number: 6822838
    Abstract: A dual magnetic tunnel junction (MTJ) sensor is provided with a longitudinal bias stack sandwiched between a first MTJ stack and a second MTJ stack. The longitudinal bias stack comprises an antiferromagnetic (AFM) layer sandwiched between first and second ferromagnetic layers. The first and second MTJ stacks comprise antiparallel (AP)-pinned layers pinned by AFM layers made of an AFM material having a higher blocking temperature than the AFM material of the bias stack allowing the AP-pinned layers to be pinned in a transverse direction and the bias stack to be pinned in a longitudinal direction. The demagnetizing fields of the two AP-pinned layers cancel each other and the bias stack provides flux closures for the sense layers of the first and second MTJ stacks.
    Type: Grant
    Filed: April 2, 2002
    Date of Patent: November 23, 2004
    Assignee: International Business Machines Corporation
    Inventors: Tsann Lin, Daniele Mauri
  • Patent number: 6788499
    Abstract: A spin valve sensor with insulating and conductive seed layers is provided. The sensor comprising Al2O3/Ni—Cr—Fe/Ni—Fe/Co—Fe/Cu/Co—Fe/Ru/Co—Fe/Pt—Mn films is formed by depositing an insulating Al2O3 seed layer in a first chamber by reactively pulsed DC magnetron sputtering, depositing a conducting Ni—Cr—Fe seed layer and a ferromagnetic Ni—Fe free layer in a second chamber by ion beam sputtering, and then forming the remainder of the spin valve sensor in a third chamber by DC magnetron sputtering.
    Type: Grant
    Filed: May 19, 2003
    Date of Patent: September 7, 2004
    Assignee: International Business Machines Corporation
    Inventors: Tsann Lin, Daniele Mauri
  • Patent number: 6785099
    Abstract: A read head is provided having having ultrathin read gap layers with improved insulative properties between a magnetoresistive sensor and ferromagnetic shield layers. The read head comprises a magnetoresistive sensor with first and second shield cap layers made of high resistivity permeable magnetic material formed between the first and second ferromagnetic shields and the first and second insulative read gap layers, respectively. The shield cap layers made of Fe—Hf—Ox material, or alternatively, the Mn—Zn ferrite material provide highly resistive or insulating soft ferromagnetic layers which add to the electrically insulative read gap layers to provide increased electrical insulation of the spin valve sensor from the metallic ferromagnetic shields while not adding to the magnetic read gap of the read head.
    Type: Grant
    Filed: February 4, 2002
    Date of Patent: August 31, 2004
    Assignee: Hitachi Global Storage Technologies Netherlands B.V.
    Inventors: Wen-Yaung Lee, Tsann Lin, Daniele Mauri
  • Patent number: 6780524
    Abstract: Disclosed is a spin-valve sensor disposed between first and second gap layers and formed of one or more in-situ oxidized films. The improved spin valve sensor helps eliminate electrical shorting between the spin-valve sensor and shield layers. A fabrication method of the gap layers comprises repeatedly depositing a metallic films on a wafer in a DC-magnetron sputtering module of a sputtering system, and then transferring the wafer in a vacuum to an oxidation module where in-situ oxidation is conducted. This deposition/in-situ oxidation process is repeated until a designed thicknesses of gap layers is attained. Smaller, more sensitive spin-valve sensors may be sandwiched between thinner gap layers formed of in-situ oxidized films, thus allowing for greater recording data densities in disk drive systems.
    Type: Grant
    Filed: February 4, 2002
    Date of Patent: August 24, 2004
    Assignee: Hitachi Global Storage Technologies Netherlands B.V.
    Inventors: Tsann Lin, Daniele Mauri
  • Patent number: 6775111
    Abstract: A trilayer seed layer structure is employed between a first read gap layer and a spin valve sensor for improving the magnetic and giant magnetoresistive properties and the thermal stability. In the spin valve sensor, the trilayer seed layer structure is located between a first read gap layer and a ferromagnetic free layer. The antiferromagnetic pinning layer is preferably nickel manganese (Ni—Mn). The trilayer seed layer structure includes a first seed layer that is a first metallic oxide, a second seed layer that is a second metallic oxide and a third seed layer that is a nonmagnetic metal. A preferred embodiment is a first seed layer of nickel oxide (NiO), a second seed layer of nickel manganese oxide (NiMnOx), and a third seed layer of copper (Cu).
    Type: Grant
    Filed: May 3, 2002
    Date of Patent: August 10, 2004
    Assignee: International Business Machines Corporation
    Inventors: Tsann Lin, Daniele Mauri
  • Patent number: 6747852
    Abstract: A magnetoresistance sensor structure is formed of a magnetoresistance sensor having a transverse biasing stack including a transverse pinning layer made of a transverse-pinning-layer antiferromagnetic material, and a transverse pinned layer structure overlying the transverse pinning layer, a spacer layer overlying the transverse pinned layer structure, a sensing stack overlying the spacer layer, and a decoupling layer overlying the sensing stack. A longitudinal biasing stack overlies the magnetoresistance sensor and includes a longitudinal pinned layer, and a longitudinal pinning layer overlying the longitudinal pinned layer and made of a longitudinal-pinning-layer antiferromagnetic material. The transverse-pinning-layer antiferromagnetic material and the longitudinal-pinning-layer antiferromagnetic material are preferably Pt—Mn or Ni—Mn.
    Type: Grant
    Filed: August 17, 2001
    Date of Patent: June 8, 2004
    Assignee: International Business Machines Corporation
    Inventors: Tsann Lin, Daniele Mauri
  • Publication number: 20040101978
    Abstract: A fabrication process for a tunneling magnetoresistance (TMR) sensor is disclosed. In particular, a unique method of forming a barrier layer of the TMR sensor is utilized so that the TMR sensor exhibits good magnetic and TMR properties. In one particular example, the barrier layer is formed by depositing a metallic film in an argon gas in a DC magnetron sputtering module, depositing an oxygen-doped metallic film in mixed xenon and oxygen gases in an ion-beam sputtering module, and oxidizing these films in an oxygen gas in an oxygen treatment module. This three-step barrier layer formation process minimizes oxygen penetration into ferromagnetic (FM) sense and pinned layers of the TMR sensor and optimally controls oxygen doping into the barrier layer. As a result, the FM sense and pinned layers exhibit controlled magnetic properties, the barrier layer provides a low junction resistance-area product, and the TMR sensor exhibits a high TMR coefficient.
    Type: Application
    Filed: November 25, 2002
    Publication date: May 27, 2004
    Inventors: Tsann Linn, Daniele Mauri
  • Publication number: 20040095691
    Abstract: An antiferromagnetic stabilization scheme is employed in a magnetic head for magnetically stabilizing a free layer of a spin valve. This is accomplished by utilizing an antiferromagnetic oxide film below a spin valve sensor in a read region and first and second lead layers in end regions and a ferromagnetic film in each of the lead layers that exchange couples to the antiferromagnetic oxide film in the end regions. The ferromagnetic films are pinned with their magnetic moments oriented parallel to an air bearing surface (ABS) of the magnetic head. The ferromagnetic film magnetostatically couples to the free layer which causes the free layer to be in a single magnetic domain state. Accordingly, when the free layer is subjected to magnetic incursions from a rotating disk in a disk drive, the free layer maintains a stable magnetic condition so that resistance changes of the free layer are not altered by differing magnetic conditions of the free layer.
    Type: Application
    Filed: November 7, 2003
    Publication date: May 20, 2004
    Inventors: Tsann Lin, Daniele Mauri
  • Patent number: 6735058
    Abstract: A current-perpendicular-to-plane (CPP) read head with an amorphous magnetic bottom shield layer and an amorphous nonmagnetic bottom lead gap layer is disclosed. The amorphous magnetic bottom shield layer and amorphous nonmagnetic bottom lead layer provide a planar surface for the CPP read head deposited thereon to exhibit a low ferromagnetic coupling field and a high giant (or tunneling) magnetoresistance coefficient. The amorphous magnetic bottom shield layer is preferably formed of an Fe-based or Co-based film. The amorphous nonmagnetic bottom lead layer is preferable formed of a W-based or Ni-based film.
    Type: Grant
    Filed: February 4, 2002
    Date of Patent: May 11, 2004
    Assignee: International Business Machines Corporation
    Inventors: Tsann Lin, Daniele Mauri
  • Publication number: 20040085683
    Abstract: A dual spin valve (SV) sensor is provided with a longitudinal bias stack sandwiched between a first SV stack and a second SV stack. The longitudinal bias stack comprises an antiferromagnetic (AFM) layer sandwiched between first and second ferromagnetic layers. The first and second SV stacks comprise antiparallel (AP)-pinned layers pinned by AFM layers made of an AFM material having a higher blocking temperature than the AFM material of the bias stack allowing the AP-pinned layers to be pinned in a transverse direction and the bias stack to be pinned in a longitudinal direction. The demagnetizing fields of the two AP-pinned layers cancel each other and the bias stack provides flux closures for the sense layers of the first and second SV stacks.
    Type: Application
    Filed: October 24, 2003
    Publication date: May 6, 2004
    Applicant: Hitachi Global Storage Technologies
    Inventors: Tsann Lin, Daniele Mauri
  • Patent number: 6731477
    Abstract: Disclosed is a system and method for forming a current-perpendicular-to-plane (CPP) spin-valve sensor with one or more metallic oxide barrier layers in order to provide a low junction resistance and a high GMR coefficient. In disclosed embodiments, the metallic oxide barrier layers are formed with oxygen-doping/in-situ oxidation processes comprising depositing a metallic film in a first mixture of argon and oxygen gases and subsequent in-situ oxidization in a second mixture of argon and oxygen gases. The exposure to oxygen may be conducted at a low partial oxygen pressure and at a moderate temperature. Smaller, more sensitive CPP spin-valve sensors may be formed through the use of the oxygen-doping/in-situ oxidization processes of the present invention, thus allowing for greater densities of disk drive systems.
    Type: Grant
    Filed: September 20, 2001
    Date of Patent: May 4, 2004
    Assignee: Hitachi Global Storage Technologies Netherlands B.V.
    Inventors: Tsann Lin, Daniele Mauri
  • Publication number: 20040061982
    Abstract: The GMR read head includes a GMR read sensor and a longitudinal bias (LB) stack in a read region, and the GMR read sensor, the LB stack and a first conductor layer in two overlay regions. In its fabrication process, the GMR read sensor, the LB stack and the first conductor layer are sequentially deposited on a bottom gap layer. A monolayer photoresist is deposited, exposed and developed in order to open a read trench region for the definition of a read width, and RIE is then applied to remove the first conductor layer in the read trench region. After liftoff of the monolayer photoresist, bilayer photoresists are deposited, exposed and developed in order to mask the read and overlay regions, and a second conductor layer is deposited in two unmasked side regions. As a result, side reading is eliminated and a read width is sharply defined by RIE.
    Type: Application
    Filed: September 29, 2003
    Publication date: April 1, 2004
    Inventors: Tsann Lin, Daniele Mauri