Patents by Inventor Danielle Rand

Danielle Rand has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10307527
    Abstract: Systems, compositions, methods and kits employ protein shells, such as ferritin or viral capsid shells, herein called nanobubbles, to enhance X-ray images of cells or body tissue under certain x-ray imaging methods. The nanobubbles have sub-micron size such as about 10 nm, about 40, 60, or 100 nm and may be functionalized for effective delivery to or uptake by a target tissue, in vivo or a cell culture. The nanobubbles are hollow, having a central core which may be empty or contain a fluid, such that the shells effectively form long-lived bubbles in the imaged environment, and are of low electron density and have different scattering properties than the surrounding tissue. X-ray imaging by spatial frequency heterodyne imaging enhances visualization or detection of tissue regions bearing the shells. The protein shells may be further treated to assure biocompatibility and/or to resist undesired interactions with non-targeted tissue, such as scavenging by the liver, or attack by the immune system.
    Type: Grant
    Filed: April 21, 2015
    Date of Patent: June 4, 2019
    Assignees: Brown University, Montana State University
    Inventors: Christoph Rose-Petruck, Trevor Douglas, Danielle Rand, Masaki Uchida
  • Publication number: 20160274086
    Abstract: Methods, compositions, systems, devices and kits are provided herein for preparing and using a nanoparticle composition and spatial frequency heterodyne imaging for visualizing cells or tissues. In various embodiments, the nanoparticle composition includes at least one of: a nanoparticle, a polymer layer, and a binding agent, such that the polymer layer coats the nanoparticle and is for example a polyethylene glycol, a polyelectrolyte, an anionic polymer, or a cationic polymer, and such that the binding agent that specifically binds the cells or the tissue. Methods, compositions, systems, devices and kits are provided for identifying potential therapeutic agents in a model using the nanoparticle composition and spatial frequency heterodyne imaging.
    Type: Application
    Filed: April 1, 2016
    Publication date: September 22, 2016
    Applicants: Brown University, Rhode Island Hospital
    Inventors: Christoph Rose-Petruck, Jack R. Wands, Danielle Rand, Zoltan Derdak, Vivian Ortiz
  • Patent number: 9316645
    Abstract: Methods, compositions, systems, devices and kits are provided herein for preparing and using a nanoparticle composition and spatial frequency heterodyne imaging for visualizing cells or tissues. In various embodiments, the nanoparticle composition includes at least one of: a nanoparticle, a polymer layer, and a binding agent, such that the polymer layer coats the nanoparticle and is for example a polyethylene glycol, a polyelectrolyte, an anionic polymer, or a cationic polymer, and such that the binding agent that specifically binds the cells or the tissue. Methods, compositions, systems, devices and kits are provided for identifying potential therapeutic agents in a model using the nanoparticle composition and spatial frequency heterodyne imaging.
    Type: Grant
    Filed: October 5, 2012
    Date of Patent: April 19, 2016
    Assignees: BROWN UNIVERSITY, RHODE ISLAND HOSPITAL
    Inventors: Christoph Rose-Petruck, Jack R. Wands, Danielle Rand, Zoltan Derdak, Vivian Ortiz
  • Publication number: 20150297756
    Abstract: Systems, compositions, methods and kits employ protein shells, such as ferritin or viral capsid shells, herein called nanobubbles, to enhance X-ray images of cells or body tissue under certain x-ray imaging methods. The nanobubbles have sub-micron size such as about 10 nm, about 40, 60, or 100 nm and may be functionalized for effective delivery to or uptake by a target tissue, in vivo or a cell culture. The nanobubbles are hollow, having a central core which may be empty or contain a fluid, such that the shells effectively form long-lived bubbles in the imaged environment, and are of low electron density and have different scattering properties than the surrounding tissue. X-ray imaging by spatial frequency heterodyne imaging enhances visualization or detection of tissue regions bearing the shells. The protein shells may be further treated to assure biocompatibility and/or to resist undesired interactions with non-targeted tissue, such as scavenging by the liver, or attack by the immune system.
    Type: Application
    Filed: April 21, 2015
    Publication date: October 22, 2015
    Inventors: Christoph Rose-Petruck, Trevor Douglas, Danielle Rand, Masaki Uchida
  • Patent number: 8569006
    Abstract: The invention relates to a sensor comprising a sensing layer and a surface layer, wherein said surface layer comprises, a first region suitable for adherent growth of cells, and a second region, adjacent to said second layer, suitable for the attachment of proteins, wherein the first and second region are in contact with the sensing layer.
    Type: Grant
    Filed: February 29, 2008
    Date of Patent: October 29, 2013
    Assignees: IMEC, Katholieke Universiteit Leuven, K.U. Leuven R&D
    Inventors: Dries Braeken, Danielle Rand, Carmen Bartic