Patents by Inventor Danil Tirtowidjojo

Danil Tirtowidjojo has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11492300
    Abstract: Methods, systems, and apparatuses for coating a material by contacting the material with a coating material and a solvent are disclosed herein. The coated material can be obtained by evaporating the solvent: by heating the coated material directly or indirectly with electromagnetic radiation; by heating with heat generated from a heat source that heats an internal container for the material to be coated and/or coated material; and/or in an interior volume of a coating container having a side wall, by heating a portion of the side wall of the coating container and/or internal container with a heat source that is positioned outside of the interior volume of the coating container.
    Type: Grant
    Filed: December 19, 2017
    Date of Patent: November 8, 2022
    Assignee: SABIC GLOBAL TECHNOLOGIES B.V.
    Inventors: Farooq Uraizee, Danil Tirtowidjojo, Jayachandran Chandrasekaran, Ramesh Rameswaran
  • Patent number: 11291944
    Abstract: A method for removing solvent from a solvent containing sweep gas stream obtained from a fertilizer coating process is disclosed. The method can include directly contacting the solvent containing sweep gas stream with an aqueous composition comprising 50% wt/wt to 100% wt/wt of water, condensing at least a portion of the solvent out of the solvent containing sweep gas stream into the aqueous composition to produce a solvent-enriched aqueous composition and a recovered sweep gas stream, and removing the recovered sweep gas stream from the solvent-enriched aqueous composition.
    Type: Grant
    Filed: December 19, 2017
    Date of Patent: April 5, 2022
    Assignee: SABIC GLOBAL TECHNOLOGIES B.V.
    Inventors: Farooq Uraizee, Danil Tirtowidjojo, Ramesh Rameswaran, Jayachandran Chandrasekaran
  • Publication number: 20200385316
    Abstract: Methods, systems, and apparatuses for coating a material by contacting the material with a coating material and a solvent are disclosed herein. The coated material can be obtained by evaporating the solvent: by heating the coated material directly or indirectly with electromagnetic radiation; by heating with heat generated from a heat source that heats an internal container for the material to be coated and/or coated material; and/or in an interior volume of a coating container having a side wall, by heating a portion of the side wall of the coating container and/or internal container with a heat source that is positioned outside of the interior volume of the coating container.
    Type: Application
    Filed: December 19, 2017
    Publication date: December 10, 2020
    Applicant: SABIC GLOBAL TECHNOLOGIES B.V.
    Inventors: Farooq URAIZEE, Danil TIRTOWIDJOJO, Jayachandran CHANDRASEKARAN, Ramesh RAMESWARAN
  • Publication number: 20200157013
    Abstract: Methods, systems, and apparatuses for coating a fertilizer material by contacting the material with a coating material and a solvent are disclosed herein. The coated material can be obtained by mechanically agitating the fertilizer material while contacting the fertilizer material with a coating material and a solvent. The coating material can be sprayed onto the fertilizer material during mechanical agitation. The coating process and apparatus can use a paddle mixer and can be configured to handle organic solvents used to carry the coating material.
    Type: Application
    Filed: July 23, 2018
    Publication date: May 21, 2020
    Applicant: SABIC GLOBAL TECHNOLOGIES B.V.
    Inventors: James HAIGH, Danil TIRTOWIDJOJO, Travis HARPER
  • Publication number: 20190336905
    Abstract: A method for removing solvent from a solvent containing sweep gas stream obtained from a fertilizer coating process is disclosed. The method can include directly contacting the solvent containing sweep gas stream with an aqueous composition comprising 50% wt/wt to 100% wt/wt of water, condensing at least a portion of the solvent out of the solvent containing sweep gas stream into the aqueous composition to produce a solvent-enriched aqueous composition and a recovered sweep gas stream, and removing the recovered sweep gas stream from the solvent-enriched aqueous composition.
    Type: Application
    Filed: December 19, 2017
    Publication date: November 7, 2019
    Applicant: SABIC GLOBAL TECHNOLOGIES B.V.
    Inventors: Farooq URAIZEE, Danil TIRTOWIDJOJO, Ramesh RAMESWARAN, Jayachandran CHANDRASEKARAN
  • Patent number: 8926916
    Abstract: A process and apparatus for recovering dichlorohydrins from a mixture comprising dichlorohydrins, one or more compounds selected from esters of dichlorohydrins, monochlorohydrins and/or esters thereof, and multihydroxylated-aliphatic hydrocarbon compounds and/or esters thereof, and optionally one or more substances comprising water, chlorinating agents, catalysts and/or esters of catalysts is disclosed. The mixture is stripped to recover dichlorohydrin(s) while distilling or fractionating the mixture to separate a lower boiling fraction comprising dichlorohydrin(s) from the mixture in one step. Advantages include more efficient recovery of dichlorohydrins for a given distillation column, less waste due to avoiding the conditions conducive to the formation of heavy byproducts, and reduced capital investment in recovery equipment.
    Type: Grant
    Filed: March 15, 2013
    Date of Patent: January 6, 2015
    Assignee: Dow Global Technologies LLC
    Inventors: Danil Tirtowidjojo, Andrei S. Merenov, Christian D. Kneupper, Bruce D. Hook, Anil Mehta
  • Patent number: 8664453
    Abstract: A process and apparatus for recovering dichlorohydrins from a mixture comprising dichlorohydrins, one or more compounds selected from esters of dichlorohydrins, monochlorohydrins and/or esters thereof, and multihydroxylated-aliphatic hydrocarbon compounds and/or esters thereof, and optionally one or more substances comprising water, chlorinating agents, catalysts and/or esters of catalysts is disclosed. The mixture is distilled or fractionated to separate a lower boiling fraction comprising dichlorohydrin(s) from the mixture to form a higher boiling fraction comprising the residue of the distillation or fractionation. The higher boiling fraction is stripped to recover remaining dichlorohydrins. Advantages include more efficient recovery of dichlorohydrins for a given distillation column, less waste due to avoiding the conditions conducive to the formation of heavy byproducts, and reduced capital investment in recovery equipment.
    Type: Grant
    Filed: April 11, 2008
    Date of Patent: March 4, 2014
    Assignee: Dow Global Technologies Inc.
    Inventors: Danil Tirtowidjojo, Andrei S. Merenov, Christian D. Kneupper, Bruce D. Hook, Anil I. Mehta
  • Patent number: 8629305
    Abstract: A process and apparatus for recovering dichlorohydrins from a mixture comprising dichlorohydrins, water, one or more compounds selected from esters of dichlorohydrins, monochlorohydrins and/or esters thereof, and multihydroxylated-aliphatic hydrocarbon compounds and/or esters thereof, and optionally one or more substances comprising chlorinating agents, catalysts and/or esters of catalysts is disclosed. A liquid aqueous phase is recycled to the distillation column while distilling or fractionating the mixture to separate dichlorohydrin(s) and water from the mixture. Advantages include more efficient recovery of dichlorohydrins for a given distillation column, less waste due to avoiding the conditions conducive to the formation of heavy byproducts, and reduced capital investment in recovery equipment.
    Type: Grant
    Filed: April 11, 2008
    Date of Patent: January 14, 2014
    Assignee: Dow Global Technologies Inc
    Inventors: Danil Tirtowidjojo, Andrei S. Merenov, Christian D. Kneupper, Bruce D. Hook, Anil J. Mehta
  • Patent number: 8541632
    Abstract: A process and apparatus for producing chlorohydrin comprising reacting a multihydroxylated-aliphatic hydrocarbon-containing stream with a stream of a first effluent exiting from a hydrochlorination reactor in at least one vessel wherein the vessel exhibits a plug flow residence time characteristic, under conditions such that at least a portion of any unreacted HCl component present in the first effluent is reacted with the multihydroxylated-aliphatic hydrocarbon present in the multihydroxylated aliphatic hydrogen-containing stream to from an amount of monochlorohydrin in a stream of a second effluent exiting from the plug flow vessel; recovering said second effluent; and then optionally using the second effluent from the plug flow reactor in a subsequent processing operation.
    Type: Grant
    Filed: April 11, 2008
    Date of Patent: September 24, 2013
    Assignee: Dow Global Technologies LLC
    Inventors: Anil J. Mehta, Danil Tirtowidjojo, Bruce D. Hook, John R. Briggs, Jeffrey G. Hippler
  • Patent number: 8420870
    Abstract: A process and apparatus for recovering dichlorohydrins from a mixture comprising dichlorohydrins, one or more compounds selected from esters of dichlorohydrins, monochlorohydrins and/or esters thereof, and multihydroxylated-aliphatic hydrocarbon compounds and/or esters thereof, and optionally one or more substances comprising water, chlorinating agents, catalysts and/or esters of catalysts is disclosed. The mixture is stripped to recover dichlorohydrin(s) while distilling or fractionating the mixture to separate a lower boiling fraction comprising dichlorohydrin(s) from the mixture in one step. Advantages include more efficient recovery of dichlorohydrins for a given distillation column, less waste due to avoiding the conditions conducive to the formation of heavy byproducts, and reduced capital investment in recovery equipment.
    Type: Grant
    Filed: April 11, 2008
    Date of Patent: April 16, 2013
    Assignee: Dow Global Technologies LLC
    Inventors: Danil Tirtowidjojo, Andrei S. Merenov, Christian D. Kneupper, Bruce D. Hook, Anil J. Mehta
  • Patent number: 8334415
    Abstract: A process and apparatus for recovering dichlorohydrins from a mixture comprising dichlorohydrins, water, one or more compounds selected from esters of dichlorohydrins, monochlorohydrins and/or esters thereof, and multihydroxylated-aliphatic hydrocarbon compounds and/or esters thereof, and optionally one or more substances comprising chlorinating agents, catalysts and/or esters of catalysts while minimizing formation of heavies is disclosed.
    Type: Grant
    Filed: April 11, 2008
    Date of Patent: December 18, 2012
    Assignee: Dow Global Technologies LLC
    Inventors: Anil J. Mehta, Danil Tirtowidjojo, Jose Javier Longoria
  • Publication number: 20110098516
    Abstract: A process and apparatus for recovering dichlorohydrins from a mixture comprising dichlorohydrins, one or more compounds selected from esters of dichlorohydrins, monochlorohydrins and/or esters thereof, and multihydroxylated-aliphatic hydrocarbon compounds and/or esters thereof, and optionally one or more substances comprising water, chlorinating agents, catalysts and/or esters of catalysts is disclosed. The mixture is distilled or fractionated to separate a lower boiling fraction comprising dichlorohydrin(s) from the mixture to form a higher boiling fraction comprising the residue of the distillation or fractionation. The higher boiling fraction is distilled or fractionated to separate remaining dichlorohydrin(s) from the above mixture to form an even higher boiling fraction comprising the residue of the distillation or fractionation. At least some of the lower boiling fraction and the dichlorohydrin(s) are recovered.
    Type: Application
    Filed: March 18, 2009
    Publication date: April 28, 2011
    Inventors: Bruce D. Hook, Andrei Merenov, Danil Tirtowidjojo
  • Publication number: 20110004027
    Abstract: A process and apparatus for producing chlorohydrin comprising reacting a multihydroxylated-aliphatic hydrocarbon-containing stream with a stream of a first effluent exiting from a hydrochlorination reactor in at least one vessel wherein the vessel exhibits a plug flow residence time characteristic, under conditions such that at least a portion of any unreacted HCl component present in the first effluent is reacted with the multihydroxylated-aliphatic hydrocarbon present in the multihydroxylated aliphatic hydrogen-containing stream to from an amount of monochlorohydrin in a stream of a second effluent exiting from the plug flow vessel; recovering said second effluent; and then optionally using the second effluent from the plug flow reactor in a subsequent processing operation.
    Type: Application
    Filed: April 11, 2008
    Publication date: January 6, 2011
    Inventors: Anil J. Mehta, Danil Tirtowidjojo, Bruce D. Hook, John R. Briggs, Jeffrey G. Hippler
  • Publication number: 20100137652
    Abstract: A process and apparatus for recovering dichlorohydrins from a mixture comprising dichlorohydrins, one or more compounds selected from esters of dichlorohydrins, monochlorohydrins and/or esters thereof, and multihydroxylated-aliphatic hydrocarbon compounds and/or esters thereof, and optionally one or more substances comprising water, chlorinating agents, catalysts and/or esters of catalysts is disclosed. The mixture is distilled or fractionated to separate a lower boiling fraction comprising dichlorohydrin(s) from the mixture to form a higher boiling fraction comprising the residue of the distillation or fractionation. The higher boiling fraction is stripped to recover remaining dichlorohydrins. Advantages include more efficient recovery of dichlorohydrins for a given distillation column, less waste due to avoiding the conditions conducive to the formation of heavy byproducts, and reduced capital investment in recovery equipment.
    Type: Application
    Filed: April 11, 2008
    Publication date: June 3, 2010
    Inventors: Danil Tirtowidjojo, Andrei S. Merenov, Christian D. Kneupper, Bruce D. Hook, Anil I. Mehta
  • Publication number: 20100137653
    Abstract: A process and apparatus for recovering dichlorohydrins from a mixture comprising dichlorohydrins, one or more compounds selected from esters of dichlorohydrins, monochlorohydrins and/or esters thereof, and multihydroxylated-aliphatic hydrocarbon compounds and/or esters thereof, and optionally one or more substances comprising water, chlorinating agents, catalysts and/or esters of catalysts is disclosed. The mixture is stripped to recover dichlorohydrin(s) while distilling or fractionating the mixture to separate a lower boiling fraction comprising dichlorohydrin(s) from the mixture in one step. Advantages include more efficient recovery of dichlorohydrins for a given distillation column, less waste due to avoiding the conditions conducive to the formation of heavy byproducts, and reduced capital investment in recovery equipment.
    Type: Application
    Filed: April 11, 2008
    Publication date: June 3, 2010
    Inventors: Danil Tirtowidjojo, Andrei S. Merenov, Christian D. Kneupper, Bruce D. Hook, Anil J. Mehta
  • Publication number: 20100137621
    Abstract: A process and apparatus for recovering dichlorohydrins from a mixture comprising dichlorohydrins, water, one or more compounds selected from esters of dichlorohydrins, monochlorohydrins and/or esters thereof, and multihydroxylated-aliphatic hydrocarbon compounds and/or esters thereof, and optionally one or more substances comprising chlorinating agents, catalysts and/or esters of catalysts while minimizing formation of heavies is disclosed.
    Type: Application
    Filed: April 11, 2008
    Publication date: June 3, 2010
    Inventors: Anil Mehta, Danil Tirtowidjojo, Jose Javier Longoria
  • Publication number: 20100105965
    Abstract: A process and apparatus for recovering dichlorohydrins from a mixture comprising dichlorohydrins, water, one or more compounds selected from esters of dichlorohydrins, monochlorohydrins and/or esters thereof, and multihydroxylated-aliphatic hydrocarbon compounds and/or esters thereof, and optionally one or more substances comprising chlorinating agents, catalysts and/or esters of catalysts is disclosed. A liquid aqueous phase is recycled to the distillation column while distilling or fractionating the mixture to separate dichlorohydrin(s) and water from the mixture. Advantages include more efficient recovery of dichlorohydrins for a given distillation column, less waste due to avoiding the conditions conducive to the formation of heavy byproducts, and reduced capital investment in recovery equipment.
    Type: Application
    Filed: April 11, 2008
    Publication date: April 29, 2010
    Inventors: Danil Tirtowidjojo, Andrei S. Merenov, Christian D. Kneupper, Bruce D. Hook, Anil J. Mehta
  • Patent number: 6262226
    Abstract: The present invention is directed to a process for producing a high molecular weight condensation polymer by removing unwanted by-product(s) from a polycondensation equilibrium reaction mixture using a centrifugal force device equipped with a vacuum.
    Type: Grant
    Filed: April 13, 2000
    Date of Patent: July 17, 2001
    Assignee: The Dow Chemical Company
    Inventors: Eugene R. Moore, George J. Quarderer, Jr., Clark J. Cummings, Danil Tirtowidjojo
  • Patent number: 6048513
    Abstract: This invention is a method for forming hypohalous acid in a mass transfer device. The method comprises: (1) feeding into the device a stream of caustic solution comprising at least one alkali or alkaline earth metal of a hydroxide, oxide, hypohalite, bicarbonate, or carbonate; (2) feeding a stream comprising halogen gas into the device; (3) reacting at least some of the halogen gas with the caustic solution to form a solution containing hypohalous acid; (4) desorbing the hypohalous acid from the solution and into the stream of halogen gas; and (5) removing the stream of halogen gas from the device. In this method, the mass transfer device comprises a porous rotor which is permeable to the streams, and is rotated about an axis such that the streams flow through the rotor and the stream of caustic solution flows radially outward from the axis.
    Type: Grant
    Filed: January 10, 1997
    Date of Patent: April 11, 2000
    Assignee: The Dow Chemical Company
    Inventors: George J. Quarderer, David L. Trent, Erik J. Stewart, Danil Tirtowidjojo, Anil J. Mehta, Cheryl A. Tirtowidjojo
  • Patent number: 5532389
    Abstract: A process of preparing alkylene oxides comprises steps of: (1) optionally forming a hypochlorite solution; (2) contacting chlorine with a solution of a hypochlorite below about 60.degree. C., and a pH of less than about 5.5, with sufficient micromixing to achieve a product hypochlorous acid in a yield of at least about 80 percent; (3) separating at least a portion the hypochlorous acid from an aqueous metal chloride solution wherein the solution is sprayed as droplets; (4) distilling the remaining liquid phase; (5) absorbing the hypochlorous acid and dichlorine monoxide in low-chlorides water to produce a low-chlorides aqueous hypochlorous acid solution; (6) contacting the low-chlorides aqueous hypochlorous acid solution with an olefin in a continuous process to form a olefin chlorohydrin; (7) optionally contacting the olefin chlorohydrin with a base to form a alkylene oxide and a salt solution; and (8) optionally separating the alkylene oxide from the salt solution.
    Type: Grant
    Filed: September 9, 1994
    Date of Patent: July 2, 1996
    Assignee: The Dow Chemical Company
    Inventors: David L. Trent, George J. Quarderer, Kim G. Bargeron, Douglas C. Greminger, David J. Koranek, Erik J. Stewart, Curtis N. Swisher, Cheryl A. Tirtowidjojo, Danil Tirtowidjojo