Patents by Inventor Danish Faruqui

Danish Faruqui has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9859248
    Abstract: Embodiments of the present disclosure are directed to die adhesive films for integrated circuit (IC) packaging, as well as methods for forming and removing die adhesive films and package assemblies and systems incorporating such die adhesive films. A die adhesive film may be transparent to a first wavelength of light and photoreactive to a second wavelength of light. In some embodiments, the die adhesive film may be applied to a back or “inactive” side of a die, and the die surface may be detectable through the die adhesive film. The die adhesive film may be cured and/or marked with laser energy having the second wavelength of light. The die adhesive film may include a thermochromic dye and/or nanoparticles configured to provide laser mark contrast. UV laser energy may be used to remove the die adhesive film in order to expose underlying features such as TSV pads.
    Type: Grant
    Filed: June 29, 2016
    Date of Patent: January 2, 2018
    Assignee: INTEL CORPORATION
    Inventors: Danish Faruqui, Edward R. Prack, Sergei L. Voronov, David K. Wilkinson, Jr., Tony Dambrauskas, Lars D. Skoglund, Yoshihiro Tomita, Mihir A. Oka, Rajen C. Dias
  • Patent number: 9824991
    Abstract: Electronic assemblies and their manufacture are described. One embodiment relates to a method including depositing an organic thin film layer on metal bumps on a semiconductor wafer, the organic thin film layer also being formed on a surface adjacent to the metal bumps on the wafer. The wafer is diced into a plurality of semiconductor die structures, the die structures including the organic thin film layer. The semiconductor die structures are attached to substrates, wherein the attaching includes forming a solder bond between the metal bumps on a die structure and bonding pads on a substrate, and wherein the solder bond extends through the organic thin film layer. The organic thin film layer is then exposed to a plasma. Other embodiments are described and claimed.
    Type: Grant
    Filed: January 31, 2017
    Date of Patent: November 21, 2017
    Assignee: INTEL CORPORATION
    Inventors: Aleksandar Aleksov, Tony Dambrauskas, Danish Faruqui, Mark S. Hlad, Edward R. Prack
  • Patent number: 9786517
    Abstract: Introducing an underfill material over contact pads on a surface of an integrated circuit substrate; and ablating the introduced underfill material to expose an area of the contact pads using temporally coherent electromagnetic radiation. A method including first ablating an underfill material to expose an area of contact pads on a substrate using temporally coherent electromagnetic radiation; introducing a solder to the exposed area of the contact pads; and second ablating the underfill material using temporally coherent electromagnetic radiation. A method including introducing an underfill material over contact pads on a surface of an integrated circuit substrate; defining an opening in the underfill material to expose an area of the contact pads using temporally coherent electromagnetic radiation; introducing a solder material to the exposed area of the contact pads; and after introducing the solder, removing the sacrificial material.
    Type: Grant
    Filed: September 9, 2013
    Date of Patent: October 10, 2017
    Assignee: Intel Corporation
    Inventors: Rajendra C. Dias, Lars D. Skoglund, Anil R. Indluru, Edward R. Prack, Danish Faruqui, Tyler N. Osborn, Amram Eitan, Timothy A. Gosselin
  • Publication number: 20170141061
    Abstract: Electronic assemblies and their manufacture are described. One embodiment relates to a method including depositing an organic thin film layer on metal bumps on a semiconductor wafer, the organic thin film layer also being formed on a surface adjacent to the metal bumps on the wafer. The wafer is diced into a plurality of semiconductor die structures, the die structures including the organic thin film layer. The semiconductor die structures are attached to substrates, wherein the attaching includes forming a solder bond between the metal bumps on a die structure and bonding pads on a substrate, and wherein the solder bond extends through the organic thin film layer. The organic thin film layer is then exposed to a plasma. Other embodiments are described and claimed.
    Type: Application
    Filed: January 31, 2017
    Publication date: May 18, 2017
    Inventors: Aleksandar ALEKSOV, Tony DAMBRAUSKAS, Danish FARUQUI, Mark S. HLAD, Edward R. PRACK
  • Patent number: 9583390
    Abstract: Electronic assemblies and their manufacture are described. One embodiment relates to a method including depositing an organic thin film layer on metal bumps on a semiconductor wafer, the organic thin film layer also being formed on a surface adjacent to the metal bumps on the wafer. The wafer is diced into a plurality of semiconductor die structures, the die structures including the organic thin film layer. The semiconductor die structures are attached to substrates, wherein the attaching includes forming a solder bond between the metal bumps on a die structure and bonding pads on a substrate, and wherein the solder bond extends through the organic thin film layer. The organic thin film layer is then exposed to a plasma. Other embodiments are described and claimed.
    Type: Grant
    Filed: February 8, 2016
    Date of Patent: February 28, 2017
    Assignee: INTEL CORPORATION
    Inventors: Aleksandar Aleksov, Tony Dambrauskas, Danish Faruqui, Mark S. Hlad, Edward R. Prack
  • Publication number: 20160307869
    Abstract: Embodiments of the present disclosure are directed to die adhesive films for integrated circuit (IC) packaging, as well as methods for forming and removing die adhesive films and package assemblies and systems incorporating such die adhesive films. A die adhesive film may be transparent to a first wavelength of light and photoreactive to a second wavelength of light. In some embodiments, the die adhesive film may be applied to a back or “inactive” side of a die, and the die surface may be detectable through the die adhesive film. The die adhesive film may be cured and/or marked with laser energy having the second wavelength of light. The die adhesive film may include a thermochromic dye and/or nanoparticles configured to provide laser mark contrast. UV laser energy may be used to remove the die adhesive film in order to expose underlying features such as TSV pads.
    Type: Application
    Filed: June 29, 2016
    Publication date: October 20, 2016
    Inventors: Danish Faruqui, Edward R. Prack, Sergei L. Voronov, David K. Wilkinson, JR., Tony Dambrauskas, Lars D. Skoglund, Yoshihiro Tomita, Mihir A. Oka, Rajen C. Dias
  • Patent number: 9412702
    Abstract: Embodiments of the present disclosure are directed to die adhesive films for integrated circuit (IC) packaging, as well as methods for forming and removing die adhesive films and package assemblies and systems incorporating such die adhesive films. A die adhesive film may be transparent to a first wavelength of light and photoreactive to a second wavelength of light. In some embodiments, the die adhesive film may be applied to a back or “inactive” side of a die, and the die surface may be detectable through the die adhesive film. The die adhesive film may be cured and/or marked with laser energy having the second wavelength of light. The die adhesive film may include a thermochromic dye and/or nanoparticles configured to provide laser mark contrast. UV laser energy may be used to remove the die adhesive film in order to expose underlying features such as TSV pads.
    Type: Grant
    Filed: March 14, 2013
    Date of Patent: August 9, 2016
    Assignee: Intel Corporation
    Inventors: Danish Faruqui, Edward R. Prack, Sergei L. Voronov, David K. Wilkinson, Tony Dambrauskas, Lars D. Skoglund, Yoshihiro Tomita, Mihir A. Oka, Rajen C. Dias
  • Publication number: 20160155667
    Abstract: Electronic assemblies and their manufacture are described. One embodiment relates to a method including depositing an organic thin film layer on metal bumps on a semiconductor wafer, the organic thin film layer also being formed on a surface adjacent to the metal bumps on the wafer. The wafer is diced into a plurality of semiconductor die structures, the die structures including the organic thin film layer. The semiconductor die structures are attached to substrates, wherein the attaching includes forming a solder bond between the metal bumps on a die structure and bonding pads on a substrate, and wherein the solder bond extends through the organic thin film layer. The organic thin film layer is then exposed to a plasma. Other embodiments are described and claimed.
    Type: Application
    Filed: February 8, 2016
    Publication date: June 2, 2016
    Inventors: Aleksandar ALEKSOV, Tony DAMBRAUSKAS, Danish FARUQUI, Mark S. HLAD, Edward R. PRACK
  • Patent number: 9257276
    Abstract: Electronic assemblies and their manufacture are described. One embodiment relates to a method including depositing an organic thin film layer on metal bumps on a semiconductor wafer, the organic thin film layer also being formed on a surface adjacent to the metal bumps on the wafer. The wafer is diced into a plurality of semiconductor die structures, the die structures including the organic thin film layer. The semiconductor die structures are attached to substrates, wherein the attaching includes forming a solder bond between the metal bumps on a die structure and bonding pads on a substrate, and wherein the solder bond extends through the organic thin film layer. The organic thin film layer is then exposed to a plasma. Other embodiments are described and claimed.
    Type: Grant
    Filed: December 31, 2011
    Date of Patent: February 9, 2016
    Assignee: INTEL CORPORATION
    Inventors: Aleksandar Aleksov, Tony Dambrauskas, Danish Faruqui, Mark S. Hlad, Edward R. Prack
  • Publication number: 20150318255
    Abstract: Ultrathin microelectronic die packages and methods of fabricating the same comprising attaching a microelectronic die to a substrate with a plurality of interconnects, and depositing an underfill material between the microelectronic die and the microelectronic substrate, and around the interconnects. An etchant may be introduced to a back surface of the microelectronic die to remove a portion thereof which reduces the thickness of the microelectronic die to form an ultrathin microelectronic die. In another embodiment, the etching of the microelectronic die forms an ultrathin microelectronic die having a curved surface between the ultrathin microelectronic die back surface and a sidewall thereof.
    Type: Application
    Filed: April 30, 2014
    Publication date: November 5, 2015
    Inventors: OMKAR G. KARHADE, NITIN A. DESHPANDE, DANISH FARUQUI
  • Publication number: 20150072479
    Abstract: Introducing an underfill material over contact pads on a surface of an integrated circuit substrate; and ablating the introduced underfill material to expose an area of the contact pads using temporally coherent electromagnetic radiation. A method including first ablating an underfill material to expose an area of contact pads on a substrate using temporally coherent electromagnetic radiation; introducing a solder to the exposed area of the contact pads; and second ablating the underfill material using temporally coherent electromagnetic radiation. A method including introducing an underfill material over contact pads on a surface of an integrated circuit substrate; defining an opening in the underfill material to expose an area of the contact pads using temporally coherent electromagnetic radiation; introducing a solder material to the exposed area of the contact pads; and after introducing the solder, removing the sacrificial material.
    Type: Application
    Filed: September 9, 2013
    Publication date: March 12, 2015
    Inventors: Rajendra C. Dias, Lars D. Skoglund, Anil R. Indluru, Edward R. Prack, Danish Faruqui, Tyler N. Osborn, Amram Eitan, Timothy A. Gosselin
  • Publication number: 20150072515
    Abstract: A method including introducing a passivation material over contact pads on a surface of an integrated circuit substrate; patterning a sacrificial material on the passivation material to define openings in the sacrificial material to the contact pads; introducing solder to the contact pads; and after introducing the solder, removing the sacrificial material with the proviso that, where the sacrificial material is a photosensitive material, removing comprises using temporally coherent electromagnetic radiation. A method including introducing a passivation material over contact pads; exposing the contact pads; patterning a photosensitive material on the passivation material; introducing solder to the contact pads; and after introducing the solder, removing the photosensitive material using temporally coherent electromagnetic radiation.
    Type: Application
    Filed: September 9, 2013
    Publication date: March 12, 2015
    Inventors: Rajendra C. Dias, Lars D. Skoglund, Anil R. Indluru, Edward R. Prack, Danish Faruqui, Tyler N. Osborn
  • Publication number: 20140264951
    Abstract: Embodiments of the present disclosure are directed to die adhesive films for integrated circuit (IC) packaging, as well as methods for forming and removing die adhesive films and package assemblies and systems incorporating such die adhesive films. A die adhesive film may be transparent to a first wavelength of light and photoreactive to a second wavelength of light. In some embodiments, the die adhesive film may be applied to a back or “inactive” side of a die, and the die surface may be detectable through the die adhesive film. The die adhesive film may be cured and/or marked with laser energy having the second wavelength of light. The die adhesive film may include a thermochromic dye and/or nanoparticles configured to provide laser mark contrast. UV laser energy may be used to remove the die adhesive film in order to expose underlying features such as TSV pads.
    Type: Application
    Filed: March 14, 2013
    Publication date: September 18, 2014
    Inventors: Danish Faruqui, Edward R. Prack, Sergei L. Voronov, David K. Wilkinson, JR., Tony Dambrauskas, Lars D. Skoglund, Yoshihiro Tomita, Mihir A. Oka, Rajen C. Dias
  • Publication number: 20140138818
    Abstract: Electronic assemblies and their manufacture are described. One embodiment relates to a method including depositing an organic thin film layer on metal bumps on a semiconductor wafer, the organic thin film layer also being formed on a surface adjacent to the metal bumps on the wafer. The wafer is diced into a plurality of semiconductor die structures, the die structures including the organic thin film layer. The semiconductor die structures are attached to substrates, wherein the attaching includes forming a solder bond between the metal bumps on a die structure and bonding pads on a substrate, and wherein the solder bond extends through the organic thin film layer. The organic thin film layer is then exposed to a plasma. Other embodiments are described and claimed.
    Type: Application
    Filed: December 31, 2011
    Publication date: May 22, 2014
    Inventors: Alexsandar Aleksov, Tony Dambrauskas, Danish Faruqui, Mark S. Hlad, Edward R. Prack