Patents by Inventor Danny C. Halverson

Danny C. Halverson has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 5273709
    Abstract: Neutron absorbing refractory B.sub.4 C-Gd and Gd.sub.2 O.sub.3 -Gd cermets, B.sub.4 C-Gd and Gd.sub.2 O.sub.3 -Gd metal-matrix composites, and B.sub.4 C-Gd.sub.2 O.sub.3 ceramic-ceramic composites can be manufactured by applying fundamental thermodynamic and kinetic guidelines as processing principals.Three steps are involved in the fabrication of these new compositions of matter. First, the starting materials are consolidated into a compacted porous green body. Next, the green body is densified using the appropriate method depending on the class of material sought: cermet, metal-matrix composite, or ceramic-ceramic composite. Finally, either during the densification process or by subsequent heat treatment, new phase evolution is obtained via interfacial chemical reactions occurring in the microstructures.The existence of a new phase has been identified in B.sub.4 C-Gd and B.sub.4 C-Gd.sub.2 O.sub.3 composites.
    Type: Grant
    Filed: August 24, 1992
    Date of Patent: December 28, 1993
    Assignee: Thermal Technology Inc.
    Inventors: Danny C. Halverson, Garth W. Billings, George M. Johnston
  • Patent number: 5156804
    Abstract: Neutron absorbing refractory B.sub.4 C--Gd and Gd.sub.2 O.sub.3 --Gd cermets, B.sub.4 C--Gd and Gd.sub.2 O.sub.3 --Gd metal-matrix composites, and B.sub.4 C--Gd.sub.2 O.sub.3 ceramic-ceramic composites can be manufactured by applying fundamental thermodynamic and kinetic guidelines as processing principals.Three steps are involved in the fabrication of these new compositions of matter. First, the starting materials are consolidated into a compacted porous green body. Next, the green body is densified using the appropriate method depending on the class of material sought: cermet, metal-matrix composite, or ceramic-ceramic composite. Finally, either during the densification process or by subsequent heat treatment, new phase evolution is obtained via interfacial chemical reactions occurring in the microstructures.The existence of a new phase has been identified in B.sub.4 C--Gd and B.sub.4 C--Gd.sub.2 O.sub.3 composites.
    Type: Grant
    Filed: October 1, 1990
    Date of Patent: October 20, 1992
    Assignee: Thermal Technology, Inc.
    Inventors: Danny C. Halverson, Garth W. Billings, George M. Johnston
  • Patent number: 4990180
    Abstract: A self-sustaining combustion synthesis process for producing hard, tough, lightweight, low exothermic potential product (LEPP)/high exothermic potential product (HEPP) composites is based on the thermodynamic dependence of adiabatic temperature and product composition on the stoichiometry of the LEPP and HEPP reactants. For lightweight products the composition must be relatively rich in the LEPP component. LEPP rich composites are obtained by varying the initial temperature of the reactants. The product is hard, porous material whose toughness can be enhanced by filling the pores with aluminum or other metal phases using a liquid metal infiltration process. The process can be extended to the formation of other composites having a low exothermic component.
    Type: Grant
    Filed: September 1, 1989
    Date of Patent: February 5, 1991
    Assignee: The United States of America as represented by the United States Department of Energy
    Inventors: Danny C. Halverson, Beverly Y. Lum, Zuhair A. Munir
  • Patent number: 4988645
    Abstract: Ceramic-metal composites (cermets) are made by a combination of self-propagating high temperature combustion synthesis and molten metal infiltration. Solid-gas, solid-solid and solid-liquid reactions of a powder compact produce a porous ceramic body which is infiltrated by molten metal to produce a composite body of higher density. AlN-Al and many other materials can be produced.
    Type: Grant
    Filed: December 12, 1988
    Date of Patent: January 29, 1991
    Assignee: The United States of America as represented by the United States Department of Energy
    Inventors: Joseph B. Holt, Stephen D. Dunmead, Danny C. Halverson, Richard L. Landingham
  • Patent number: 4879262
    Abstract: A self-sustaining combustion synthesis process for producing hard, tough, lightweight B.sub.4 C/TiB.sub.2 composites is based on the thermodynamic dependence of adiabatic temperature and product composition on the stoichiometry of the B.sub.4 C and TiB.sub.2 reactants. For lightweight products the composition must be relatively rich in the B.sub.4 C component. B.sub.4 C-rich composites are obtained by varying the initial temperature of the reactants. The product is hard, porous material whose toughness can be enhanced by filling the pores with aluminum or other metal phases using a liquid metal infiltration process. The process can be extended to the formation of other composites having a low exothermic component.
    Type: Grant
    Filed: July 28, 1988
    Date of Patent: November 7, 1989
    Assignee: The United States of America as represented by the United States Department of Energy
    Inventors: Danny C. Halverson, Beverly Y. Lum, Zuhair A. Munir
  • Patent number: 4718941
    Abstract: A chemical pretreatment method is used to produce boron carbide-, boron-, and boride-reactive metal composites by an infiltration process. The boron carbide or other starting constituents, in powder form, are immersed in various alcohols, or other chemical agents, to change the surface chemistry of the starting constituents. The chemically treated starting constituents are consolidated into a porous ceramic precursor which is then infiltrated by molten aluminum or other metal by heating to wetting conditions. Chemical treatment of the starting constituents allows infiltration to full density. The infiltrated precursor is further heat treated to produce a tailorable microstructure. The process at low cost produces composites with improved characteristics, including increased toughness, strength.
    Type: Grant
    Filed: June 17, 1986
    Date of Patent: January 12, 1988
    Assignee: The Regents of the University of California
    Inventors: Danny C. Halverson, Richard L. Landingham
  • Patent number: 4605440
    Abstract: Hard, tough, lightweight boron-carbide-reactive metal composites, particularly boron-carbide-aluminum composites, are produced. These composites have compositions with a plurality of phases. A method is provided, including the steps of wetting and reacting the starting materials, by which the microstructures in the resulting composites can be controllably selected. Starting compositions, reaction temperatures, reaction times, and reaction atmospheres are parameters for controlling the process and resulting compositions. The ceramic phases are homogeneously distributed in the metal phases and adhesive forces at ceramic-metal interfaces are maximized. An initial consolidation step is used to achieve fully dense composites. Microstructures of boron-carbide-aluminum cermets have been produced with modulus of rupture exceeding 110 ksi and fracture toughness exceeding 12 ksi.sqroot.in. These composites and methods can be used to form a variety of structural elements.
    Type: Grant
    Filed: May 6, 1985
    Date of Patent: August 12, 1986
    Assignee: The United States of America as represented by the United States Department of Energy
    Inventors: Danny C. Halverson, Aleksander J. Pyzik, Ilhan A. Aksay