Patents by Inventor Danny E. Scott

Danny E. Scott has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20120325563
    Abstract: Cutting elements for use with earth-boring tools include a cutting table having at least two sections where a boundary between the at least two sections is at least partially defined by a discontinuity formed in the cutting table. Earth-boring tools including a tool body and a plurality of cutting elements carried by the tool body. The cutting elements include a cutting table secured to a substrate. The cutting table includes a plurality of adjacent sections, each having a discrete cutting edge where at least one section is configured to be selectively detached from the substrate in order to substantially expose a cutting edge of an adjacent section. Methods for fabricating cutting elements for use with an earth-boring tool including forming a cutting table comprising a plurality of adjacent sections.
    Type: Application
    Filed: June 21, 2011
    Publication date: December 27, 2012
    Applicant: BAKER HUGHES INCORPORATED
    Inventors: Danny E. Scott, Timothy K. Marvel, Yavuz Kadioglu, Michael R. Wells
  • Publication number: 20120325562
    Abstract: Cutting elements for use in earth-boring applications include a substrate, a transition layer, and a working layer. The transition layer and the working layer comprise a continuous matrix phase and a discontinuous diamond phase dispersed throughout the matrix phase. The concentration of diamond in the working layer is higher than in the transition layer. Earth-boring tools include at least one such cutting element. Methods of making cutting elements and earth-boring tools include mixing diamond crystals with matrix particles to form a mixture. The mixture is formulated in such a manner as cause the diamond crystals to comprise about 50% or more by volume of the solid matter in the mixture. The mixture is sintered to form a working layer of a cutting element that is at least substantially free of polycrystalline diamond material and that includes the diamond crystals dispersed within a continuous matrix phase formed from the matrix particles.
    Type: Application
    Filed: September 10, 2012
    Publication date: December 27, 2012
    Applicant: BAKER HUGHES INCORPORATED
    Inventors: Danny E. Scott, Nicholas J. Lyons
  • Patent number: 8333814
    Abstract: An abrasive-impregnated cutting structure for use in drilling a subterranean formation is disclosed. The abrasive-impregnated cutting structure may comprise a plurality of abrasive particles dispersed within a substantially continuous matrix, wherein the abrasive-impregnated cutting structure exhibits an anisotropic wear resistance. One or more of the amount, average size, composition, properties, shape, quality, strength, and concentration of the abrasive particles may vary within the abrasive-impregnated cutting structure. Anisotropic wear resistance may relate to a selected direction, such as, for example, one or more of an expected direction of engagement of the abrasive-impregnated cutting structure with the subterranean formation and an anticipated wear direction. Anisotropic wear resistance of an abrasive-impregnated cutting structure may be configured for forming or retaining a formation-engaging leading edge thereof.
    Type: Grant
    Filed: March 3, 2009
    Date of Patent: December 18, 2012
    Assignee: Baker Hughes Incorporated
    Inventors: Van J. Brackin, Jeffrey B. Lund, Danny E. Scott, Marcus R. Skeem, Matthew R. Isbell
  • Publication number: 20120279785
    Abstract: Earth-boring drill bits comprise a bit body having a plurality of radially extending blades and a plurality of cutting elements attached to the plurality of radially extending blades. Only gouging cutting elements are attached to at least one blade of the plurality of radially extending blades. Only shearing cutting elements are attached to at least another blade of the plurality of radially extending blades. Only shearing cutting elements are attached to a number of blades of the plurality of radially extending blades that is different from a number of blades of the plurality of radially extending blades to which only gouging cutting elements are attached. Methods of forming an earth-boring drill bit comprise forming a bit body including a plurality of radially extending blades. Only shearing cutting elements are attached to a number of blades different from a number of blades to which only gouging cutting elements are attached.
    Type: Application
    Filed: May 5, 2011
    Publication date: November 8, 2012
    Applicant: BAKER HUGHES INCORPORATED
    Inventors: David Gavia, Nicholas J. Lyons, Juan Miguel Bilen, Danny E. Scott, Rudolf Carl Pessier
  • Publication number: 20120273282
    Abstract: A downhole tool may comprise a mechanical joint, and a diamond-like coating over at least a portion of a surface of at least one component of the mechanical joint, the diamond-like coating having a thickness greater than 10 micrometers. Methods of manufacturing a mechanical joint of a downhole tool may comprise disposing a diamond-like coating on at least a portion of a surface of a component of the mechanical joint of the downhole tool to a thickness of at least 10 microns and at a temperature less than about 200° C.
    Type: Application
    Filed: April 29, 2011
    Publication date: November 1, 2012
    Applicant: BAKER HUGHES INCORPORATED
    Inventors: Chih Lin, Danny E. Scott
  • Patent number: 8292006
    Abstract: Cutting elements for use in earth-boring applications include a substrate, a transition layer, and a working layer. The transition layer and the working layer comprise a continuous matrix phase and a discontinuous diamond phase dispersed throughout the matrix phase. The concentration of diamond in the working layer is higher than in the transition layer. Earth-boring tools include at least one such cutting element. Methods of making cutting elements and earth-boring tools include mixing diamond crystals with matrix particles to form a mixture. The mixture is formulated in such a manner as cause the diamond crystals to comprise about 50% or more by volume of the solid matter in the mixture. The mixture is sintered to form a working layer of a cutting element that is at least substantially free of polycrystalline diamond material and that includes the diamond crystals dispersed within a continuous matrix phase formed from the matrix particles.
    Type: Grant
    Filed: July 23, 2009
    Date of Patent: October 23, 2012
    Assignee: Baker Hughes Incorporated
    Inventors: Danny E. Scott, Nicholas J. Lyons
  • Publication number: 20120222363
    Abstract: Methods of forming a polycrystalline table comprise disposing a plurality of particles comprising a superabrasive material, a substrate comprising a hard material, and a catalyst material in a mold. The plurality of particles is partially sintered in the presence of the catalyst material to form a brown polycrystalline table having a first permeability attached to an end of the substrate. The substrate is removed from the brown polycrystalline table and catalyst material is removed from the brown polycrystalline table. The brown polycrystalline table is then fully sintered to form a polycrystalline table having a reduced, second permeability. Intermediate structures formed during a process of attaching a polycrystalline table to a substrate comprising a substantially fully leached brown polycrystalline table. The substantially fully leached brown polycrystalline table comprises a plurality of interbonded grains of a superabrasive material.
    Type: Application
    Filed: March 4, 2011
    Publication date: September 6, 2012
    Applicant: BAKER HUGHES INCORPORATED
    Inventors: Anthony A. DiGiovanni, Nicholas J. Lyons, Derek L. Nelms, Danny E. Scott
  • Publication number: 20120225253
    Abstract: Methods of forming a polycrystalline element comprise forming a polycrystalline table on a first substrate. Catalyst material may be removed from at least a portion of the polycrystalline table. The polycrystalline table and a portion of a first substrate attached to the polycrystalline table may be removed from a remainder of the first substrate. The portion of the first substrate may be attached to another substrate. Polycrystalline elements comprise a polycrystalline table attached to a portion of a first substrate on which the polycrystalline table was formed another substrate attached to the portion of the first substrate.
    Type: Application
    Filed: March 4, 2011
    Publication date: September 6, 2012
    Applicant: BAKER HUGHES INCORPORATED
    Inventors: Anthony A. DiGiovanni, Nicholas J. Lyons, Derek L. Nelms, Danny E. Scott
  • Publication number: 20120225277
    Abstract: Methods of forming a polycrystalline element comprise disposing a first plurality of particles comprising a superabrasive material, a second plurality of particles comprising the superabrasive material, and a catalyst material in a mold. The first and second pluralities of particles are sintered to form a polycrystalline table comprising a first region having a first permeability and a second region having a second, greater permeability. Catalyst material is at least substantially removed from the polycrystalline table. The polycrystalline table is attached to an end of a substrate, the at least a second region being interposed between the first region and the substrate. Polycrystalline elements comprise a substrate. A polycrystalline table comprising a superabrasive material and having a first region exhibiting a first permeability and at least a second region exhibiting a second, greater permeability is attached to an end of the substrate.
    Type: Application
    Filed: March 4, 2011
    Publication date: September 6, 2012
    Applicant: BAKER HUGHES INCORPORATED
    Inventor: Danny E. Scott
  • Publication number: 20120222364
    Abstract: Polycrystalline elements comprise a substrate and a polycrystalline table attached to an end of the substrate. The polycrystalline table comprises a first region of superabrasive material having a first permeability and at least a second region of superabrasive material having a second, lesser permeability, the at least second region being interposed between the substrate and the first region. Methods of forming a polycrystalline element comprise attaching a polycrystalline table comprising a first region of superabrasive material having a first permeability and at least a second region of superabrasive material having a second, lesser permeability to an end of a substrate, the at least a second region being interposed between the first region and the substrate. Catalyst material is removed from at least the first region of the polycrystalline table.
    Type: Application
    Filed: March 4, 2011
    Publication date: September 6, 2012
    Applicant: BAKER HUGHES INCORPORATED
    Inventors: Nicholas J. Lyons, Danny E. Scott, Anthony A. DiGiovanni, Derek L. Nelms
  • Publication number: 20120192501
    Abstract: Methods of forming cutting elements for earth-boring tools include providing a barrier material between a first powder and a second powder each comprising diamond grains, and subjecting the powders and barrier material to high temperature and high pressure conditions to form polycrystalline diamond material. The formation of the polycrystalline diamond material is catalyzed, and catalytic material may be hindered from migrating across the layer of barrier material. Cutting elements for use in earth-boring tools include a barrier material disposed between a first layer of polycrystalline diamond material and a second layer of polycrystalline diamond material. Earth-boring tools include one or more such cutting elements for cutting an earth formation.
    Type: Application
    Filed: March 26, 2012
    Publication date: August 2, 2012
    Applicant: BAKER HUGHES INCORPORATED
    Inventors: Kurtis Schmitz, Danny E. Scott
  • Publication number: 20120186885
    Abstract: Polycrystalline compacts include a hard polycrystalline material comprising first and second regions. The first region comprises a first plurality of grains of hard material having a first average grain size, and a second plurality of grains of hard material having a second average grain size smaller than the first average grain size. The first region comprises catalyst material disposed in interstitial spaces between inter-bonded grains of hard material. Such interstitial spaces between grains of the hard material in the second region are at least substantially free of catalyst material. In some embodiments, the first region comprises a plurality of nanograins of the hard material. Cutting elements and earth-boring tools include such polycrystalline compacts.
    Type: Application
    Filed: June 17, 2011
    Publication date: July 26, 2012
    Applicant: BAKER HUGHES INCORPORATED
    Inventors: Danny E. Scott, Anthony A. DiGiovanni
  • Publication number: 20120186884
    Abstract: Polycrystalline compacts include a hard polycrystalline material comprising first and second regions. The first region comprises a first plurality of grains of hard material having a first average grain size, and a second plurality of grains of hard material having a second average grain size smaller than the first average grain size. The first region comprises catalyst material disposed in interstitial spaces between inter-bonded grains of hard material. Such interstitial spaces between grains of the hard material in the second region are at least substantially free of catalyst material. In some embodiments, the first region comprises a plurality of nanograins of the hard material. Cutting elements and earth-boring tools include such polycrystalline compacts.
    Type: Application
    Filed: January 20, 2011
    Publication date: July 26, 2012
    Applicant: BAKER HUGHES INCORPORATED
    Inventors: Danny E. Scott, Anthony A. DiGiovanni
  • Patent number: 8191658
    Abstract: Methods of forming cutting elements for earth-boring tools include providing a barrier material between a first powder and a second powder each comprising diamond grains, and subjecting the powders and barrier material to high temperature and high pressure conditions to form polycrystalline diamond material. The formation of the polycrystalline diamond material is catalyzed, and catalytic material may be hindered from migrating across the layer of barrier material. Cutting elements for use in earth-boring tools include a barrier material disposed between a first layer of polycrystalline diamond material and a second layer of polycrystalline diamond material. Earth-boring tools include one or more such cutting elements for cutting an earth formation.
    Type: Grant
    Filed: August 20, 2009
    Date of Patent: June 5, 2012
    Assignee: Baker Hughes Incorporated
    Inventors: Kurtis Schmitz, Danny E. Scott
  • Publication number: 20120102843
    Abstract: Coated diamond particles have solid diamond cores and at least one graphene layer. Methods of forming coated diamond particles include coating diamond particles with a charged species and coating the diamond particles with a graphene layer. A composition includes a substance and a plurality of coated diamond particles dispersed within the substance. An intermediate structure includes a hard polycrystalline material comprising a first plurality of diamond particles and a second plurality of diamond particles. The first plurality of diamond particles and the second plurality of diamond particles are interspersed. A method of forming a polycrystalline compact includes catalyzing the fox of inter-granular bonds between adjacent particles of a plurality of diamond particles having at least one graphene layer.
    Type: Application
    Filed: October 27, 2011
    Publication date: May 3, 2012
    Applicant: BAKER HUGHES INCORPORATED
    Inventors: Soma Chakraborty, Anthony A. DiGiovanni, Gaurav Agrawal, Danny E. Scott, Vipul Mathur
  • Publication number: 20120085585
    Abstract: A composite material comprising a plurality of hard particles surrounded by a matrix material comprising a plurality of nanoparticles. Earth boring tools including the composite material and methods of forming the composite material are also disclosed. A polycrystalline material having a catalyst material including nanoparticles in interstitial spaces between inter-bonded crystals of the polycrystalline material and methods of forming the polycrystalline material are also disclosed.
    Type: Application
    Filed: October 5, 2011
    Publication date: April 12, 2012
    Applicant: BAKER HUGHES INCORPORATED
    Inventors: Danny E. Scott, Anthony A. DiGiovanni, Jimmy W. Eason
  • Publication number: 20120080239
    Abstract: Cutting elements include a substrate, a thermally stable polycrystalline table comprising a superhard material secured to the substrate, and a layer of metal interposed between, and attaching the substrate and the thermally stable polycrystalline table. Methods of forming a cutting element include providing a thermally stable polycrystalline table in a mold, providing a layer of metal on the thermally stable polycrystalline table, distributing a mixture of particles comprising a plurality of hard particles and a plurality of particles comprising a matrix material on the layer of metal, and heating the mold while applying pressure to the mixture of particles to cause the mixture of particles to coalesce and form a substrate and at least partially melt the layer of metal to flow and wet the thermally stable polycrystalline table and the substrate to form an attachment therebetween.
    Type: Application
    Filed: September 26, 2011
    Publication date: April 5, 2012
    Applicant: BAKER HUGHES INCORPORATED
    Inventors: Nicholas J. Lyons, Danny E. Scott
  • Publication number: 20120056022
    Abstract: Hardfacing materials include particles of polycrystalline diamond (PCD) material embedded within a matrix material. The PCD particles comprise a plurality of inter-bonded diamond grains. Material compositions and structures used to apply a hardfacing material to an earth-boring tool (e.g., welding rods) include PCD particles. Earth-boring tools include a hardfacing material comprising PCD particles embedded within a matrix material on at least a portion of a surface of a body of the tools. Methods of forming a hardfacing material include subjecting diamond grains to elevated temperatures and pressures to diamond-to-diamond bonds between the diamond grains and form a PCD material. The PCD material is broken down to form PCD particles that include a plurality of inter-bonded diamond grains. Methods of hardfacing tools include bonding PCD particles to surfaces of the tools using a metal matrix material.
    Type: Application
    Filed: November 15, 2011
    Publication date: March 8, 2012
    Applicant: BAKER HUGHES INCORPORATED
    Inventors: Nicholas J. Lyons, Danny E. Scott
  • Publication number: 20120037431
    Abstract: Cutting elements comprise a multi-portion polycrystalline material. At least one portion of the multi-portion polycrystalline material comprises a higher volume of nanoparticles than at least another portion. Earth-boring tools comprise a body and at least one cutting element attached to the body. The at least one cutting element comprises a hard polycrystalline material. The hard polycrystalline material comprises a first portion comprising a first volume of nanoparticles. A second portion of the hard polycrystalline material comprises a second volume of nanoparticles. The first volume of nanoparticles differs from the second volume of nanoparticles. Methods of forming cutting elements for earth-boring tools comprise forming a volume of superabrasive material, including forming a first portion of the superabrasive material comprising a first volume of nanoparticles.
    Type: Application
    Filed: August 12, 2011
    Publication date: February 16, 2012
    Applicant: BAKER HUGHES INCORPORATED
    Inventors: Anthony A. DiGiovanni, Danny E. Scott, Soma Chakraborty, Gaurav Agrawal
  • Publication number: 20120005966
    Abstract: Methods of forming inserts for earth-boring tools include providing a material in a pattern adjacent a strip, arranging a plurality of superabrasive particles proximate the pattern, and securing at least some of the plurality of superabrasive particles to the strip. The material is configured to attract or secure the plurality of superabrasive particles. Some methods may include imparting like charges to each of a plurality of superabrasive particles, placing the plurality of superabrasive particles over a strip, and securing the superabrasive particles to the strip. In some methods, a first plurality of superabrasive particles may be placed in an array between a first strip and a second strip. A second plurality of superabrasive particles may be placed in an array between the second strip and a third strip. Methods of forming earth-boring rotary drill bits include forming an insert and securing the insert to a body of the bit.
    Type: Application
    Filed: July 5, 2011
    Publication date: January 12, 2012
    Applicant: BAKER HUGHES INCORPORATED
    Inventors: Christopher J. Cleboski, Suresh G. Patel, Danny E. Scott, L. Allen Sinor