Patents by Inventor Danny Elad

Danny Elad has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10386478
    Abstract: Embodiments of the present invention allow for radar imaging that is not range dependent for resolution. Arrays of cells comprised of antennas and true delays can be placed behind the target. The signal reflected by the individual cells provides information on whether the cell is blocked by the target. Additional information can be determined from the radar returns, such as material properties and target thickness. Similar structures can be constructed to act as wireless barcodes.
    Type: Grant
    Filed: May 18, 2016
    Date of Patent: August 20, 2019
    Assignee: International Business Machines Corporation
    Inventors: Dan Corcos, Danny Elad, Ofer Markish, Thomas E Morf
  • Patent number: 10381724
    Abstract: A parabolic cylindrical reflector antenna that comprises two or more antenna feeds each directed towards a parabolic cylindrical reflector, wherein the antenna feeds are positioned in one or more line-arrays parallel to a focal line of the parabolic cylindrical reflector, and the line-array is substantially centered opposing the reflector. The antenna comprises a controller configured to scan along a straight edge of the reflector by electronically adjusting a phase of each of the antenna feeds, thereby changing the incident angle of an energy beam relative to the reflector. The controller is configured to scan along a curved edge of the reflector by moving, using a mechanical positioning mechanism, the antenna feeds in a direction parallel to a directrix of the reflector while maintaining the positioning or by electronically selecting one of two or more parallel line-arrays.
    Type: Grant
    Filed: October 16, 2018
    Date of Patent: August 13, 2019
    Assignee: International Business Machines Corporation
    Inventors: Danny Elad, Daniel Friedman, Noam Kaminski, Ofer Markish, Alberto Valdes Garcia
  • Publication number: 20190051982
    Abstract: A parabolic cylindrical reflector antenna that comprises two or more antenna feeds each directed towards a parabolic cylindrical reflector, wherein the antenna feeds are positioned in one or more line-arrays parallel to a focal line of the parabolic cylindrical reflector, and the line-array is substantially centered opposing the reflector. The antenna comprises a controller configured to scan along a straight edge of the reflector by electronically adjusting a phase of each of the antenna feeds, thereby changing the incident angle of an energy beam relative to the reflector. The controller is configured to scan along a curved edge of the reflector by moving, using a mechanical positioning mechanism, the antenna feeds in a direction parallel to a directrix of the reflector while maintaining the positioning or by electronically selecting one of two or more parallel line-arrays.
    Type: Application
    Filed: October 16, 2018
    Publication date: February 14, 2019
    Inventors: DANNY ELAD, Daniel Friedman, Noam Kaminski, Ofer Markish, Alberto Valdes Garcia
  • Patent number: 10158170
    Abstract: A parabolic cylindrical reflector antenna that comprises two or more antenna feeds each directed towards a parabolic cylindrical reflector, wherein the antenna feeds are positioned in one or more line-arrays parallel to a focal line of the parabolic cylindrical reflector, and the line-array is substantially centered opposing the reflector. The antenna comprises a controller configured to scan along a straight edge of the reflector by electronically adjusting a phase of each of the antenna feeds, thereby changing the incident angle of an energy beam relative to the reflector. The controller is configured to scan along a curved edge of the reflector by moving, using a mechanical positioning mechanism, the antenna feeds in a direction parallel to a directrix of the reflector while maintaining the positioning or by electronically selecting one of two or more parallel line-arrays.
    Type: Grant
    Filed: January 25, 2016
    Date of Patent: December 18, 2018
    Assignee: International Business Machines Corporation
    Inventors: Danny Elad, Daniel Friedman, Noam Kaminski, Ofer Markish, Alberto Valdes Garcia
  • Publication number: 20180267140
    Abstract: A novel system that allows for 3D radar detection that simultaneously captures the lateral and depth features of a target is disclosed. This system uses only a single transceiver, a set of delay-lines, and a passive antenna array, all without requiring mechanical rotation. By using the delay lines, a set of beat frequencies corresponding to the target presence can be generated in continuous wave radar systems. Likewise, in pulsed radar systems, the delays also allow the system to determine the 3D aspects of the target(s). Compared to existing solutions, the invention, in embodiments, allows for the implementation of simple, reliable, and power efficient 3D radars.
    Type: Application
    Filed: March 20, 2017
    Publication date: September 20, 2018
    Inventors: DAN CORCOS, Danny Elad, Ofer Markish, Thomas E. Morf, Jakob Vovnoboy
  • Publication number: 20180259402
    Abstract: A method for internal calibration of a detector comprising using one or more hardware processors for the following actions. The method comprises an action of receiving a request for internal calibration of a detector comprising a switchable termination resistor (Dicke switch) and connecting electronically one or more internal calibration circuits to the termination resistor. The method comprises an action of applying two or more input voltage signals to the detector from the calibration circuit and measuring two or more output readings from the detector, each output reading corresponding to one of the input voltage signals. The method comprises an action of computing internal calibration coefficients based on the input voltage signals and the output readings. The method comprises an action of storing the internal calibration coefficients on a non-transitory computer-readable storage medium connected to the hardware processor(s) for subsequent calibration of output values from the detector.
    Type: Application
    Filed: March 9, 2017
    Publication date: September 13, 2018
    Inventors: ROEE BEN-YISHAY, DAN CORCOS, DANNY ELAD, SHRAGA KRAUS
  • Patent number: 9945934
    Abstract: A device comprising: a housing mountable on a back surface of a handheld electronic device; a radar coupled with the housing, the radar comprising: (a) a receiver unit comprising at least one receiving antenna element; (b) a transmitter unit comprising at least one transmitting antenna element; an integrated circuit (IC) module; and an interface unit configured to operatively couple the radar with the handheld electronic device.
    Type: Grant
    Filed: March 9, 2015
    Date of Patent: April 17, 2018
    Assignee: International Business Machines Corporation
    Inventors: Dan Corcos, Danny Elad
  • Patent number: 9893428
    Abstract: An assembly for confining electromagnetic radiation in a waveguide. The assembly comprises a waveguide, comprising walls surrounding a cavity and an aperture in the walls that opens to the cavity, and a substrate assembly disposed in the aperture. The substrate assembly comprises a substrate comprising an antenna, wherein the antenna is located within the cavity and is configured for transmission of radiation within the cavity. The substrate assembly comprises an integrated circuit (IC) electrically connected to the substrate, where the IC comprises semi-conductor components and a ground plane on one side of the IC. The ground plane is located between the IC semi-conductor components and the antenna. The ground plane is located across the aperture to reduce the area of the aperture and to reflect some of the radiation directed to the aperture back into the cavity.
    Type: Grant
    Filed: May 26, 2017
    Date of Patent: February 13, 2018
    Assignee: Semiconductor Components Industries, LLC
    Inventors: Danny Elad, Noam Kaminski, Ofer Markish
  • Patent number: 9882258
    Abstract: An apparatus providing a direct chip to waveguide transition, comprising: one or more waveguides, a chip partially embedding each of the waveguides at a transition area positioned at a narrow side of each waveguide, and a transmitting element disposed at each of the transition areas, thereby providing one or more simultaneous, direct transitions between the chip and the waveguides.
    Type: Grant
    Filed: March 7, 2016
    Date of Patent: January 30, 2018
    Assignee: SEMICONDUCTOR COMPONENTS INDUSTRIES, LLC
    Inventors: Roi Carmon, Danny Elad, Noam Kaminski, Ofer Markish, Thomas Morf, Evgeny Shumaker
  • Patent number: 9857231
    Abstract: A sensor and method of making a sensor for detecting an incident signal is provided. The sensor includes a frame, an antenna and a platform configured to detect the incident signal, and a holding arm connected to the frame, the holding arm configured to structurally support the antenna and the platform, and further configured to operably connect the platform to an electronic device external to the frame. The holding arm includes a conductor having an axial length and a plurality of disturbance elements formed along the axial length of the conductor.
    Type: Grant
    Filed: November 30, 2015
    Date of Patent: January 2, 2018
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Dan Corcos, Danny Elad, Bernd W. Gotsmann, Thomas E. Morf
  • Publication number: 20170336506
    Abstract: Embodiments of the present invention allow for radar imaging that is not range dependent for resolution. Arrays of cells comprised of antennas and true delays can be placed behind the target. The signal reflected by the individual cells provides information on whether the cell is blocked by the target. Additional information can be determined from the radar returns, such as material properties and target thickness. Similar structures can be constructed to act as wireless barcodes.
    Type: Application
    Filed: May 18, 2016
    Publication date: November 23, 2017
    Inventors: DAN CORCOS, DANNY ELAD, OFER MARKISH, THOMAS E. MORF
  • Publication number: 20170271775
    Abstract: An assembly for confining electromagnetic radiation in a waveguide. The assembly comprises a waveguide, comprising walls surrounding a cavity and an aperture in the walls that opens to the cavity, and a substrate assembly disposed in the aperture. The substrate assembly comprises a substrate comprising an antenna, wherein the antenna is located within the cavity and is configured for transmission of radiation within the cavity. The substrate assembly comprises an integrated circuit (IC) electrically connected to the substrate, where the IC comprises semi-conductor components and a ground plane on one side of the IC. The ground plane is located between the IC semi-conductor components and the antenna. The ground plane is located across the aperture to reduce the area of the aperture and to reflect some of the radiation directed to the aperture back into the cavity.
    Type: Application
    Filed: May 26, 2017
    Publication date: September 21, 2017
    Applicant: SEMICONDUCTOR COMPONENTS INDUSTRIES, LLC
    Inventors: Danny ELAD, Noam KAMINSKI, Ofer MARKISH
  • Patent number: 9759693
    Abstract: A novel and useful method of visualization by detection of EM radiation being irradiated or reflected from objects in the imager's field of view using Finite Element Method (FEM) simulation software tools. The methodology provides a verification method of antenna operation from an electrical point of view since bolometer performance cannot be estimated using regular antenna parameters such as directivity, gain, impedance matching, etc. as the bolometer does not behave as an antenna but rather behaves as an absorber. An incident wave is triggered on the absorber and the absorption of the bolometer structure is estimated using commercially available Finite Element Method (FEM) software (e.g., ANSYS® HFSS software, CST MICROWAVE STUDIO®, etc.). How much of the energy is reflected is subsequently measured. The energy which is not reflected is considered to be absorbed by the absorber.
    Type: Grant
    Filed: December 20, 2012
    Date of Patent: September 12, 2017
    Assignee: International Business Machines Corporation
    Inventors: Dan Corcos, Danny Elad, Noam Kaminski, Bernhard Klein, Lukas Kull, Thomas Morf
  • Publication number: 20170214145
    Abstract: A parabolic cylindrical reflector antenna that comprises two or more antenna feeds each directed towards a parabolic cylindrical reflector, wherein the antenna feeds are positioned in one or more line-arrays parallel to a focal line of the parabolic cylindrical reflector, and the line-array is substantially centered opposing the reflector. The antenna comprises a controller configured to scan along a straight edge of the reflector by electronically adjusting a phase of each of the antenna feeds, thereby changing the incident angle of an energy beam relative to the reflector. The controller is configured to scan along a curved edge of the reflector by moving, using a mechanical positioning mechanism, the antenna feeds in a direction parallel to a directrix of the reflector while maintaining the positioning or by electronically selecting one of two or more parallel line-arrays.
    Type: Application
    Filed: January 25, 2016
    Publication date: July 27, 2017
    Applicant: International Business Machines Corporation
    Inventors: Danny Elad, Daniel Friedman, Noam Kaminski, Ofer Markish, Alberto Valdes Garcia
  • Publication number: 20170199082
    Abstract: A sensor and method of making a sensor for detecting an incident signal is provided. The sensor includes a frame, an antenna and a platform configured to detect the incident signal, and a holding arm connected to the frame, the holding arm configured to structurally support the antenna and the platform, and further configured to operably connect the platform to an electronic device external to the frame. The holding arm includes a conductor having an axial length and a plurality of disturbance elements formed along the axial length of the conductor.
    Type: Application
    Filed: November 30, 2015
    Publication date: July 13, 2017
    Inventors: Dan Corcos, Danny Elad, Bernd W. Gotsmann, Thomas E. Morf
  • Patent number: 9692135
    Abstract: An assembly for confining electromagnetic radiation in a waveguide. The assembly comprises a waveguide, comprising walls surrounding a cavity and an aperture in the walls that opens to the cavity, and a substrate assembly disposed in the aperture. The substrate assembly comprises a substrate comprising an antenna, wherein the antenna is located within the cavity and is configured for transmission of radiation within the cavity. The substrate assembly comprises an integrated circuit (IC) electrically connected to the substrate, where the IC comprises semi-conductor components and a ground plane on one side of the IC. The ground plane is located between the IC semi-conductor components and the antenna. The ground plane is located across the aperture to reduce the area of the aperture and to reflect some of the radiation directed to the aperture back into the cavity.
    Type: Grant
    Filed: December 10, 2015
    Date of Patent: June 27, 2017
    Assignee: SEMICONDUCTOR COMPONENTS INDUSTRIES, LLC
    Inventors: Danny Elad, Noam Kaminski, Ofer Markish
  • Publication number: 20170170569
    Abstract: An assembly for confining electromagnetic radiation in a waveguide. The assembly comprises a waveguide, comprising walls surrounding a cavity and an aperture in the walls that opens to the cavity, and a substrate assembly disposed in the aperture. The substrate assembly comprises a substrate comprising an antenna, wherein the antenna is located within the cavity and is configured for transmission of radiation within the cavity. The substrate assembly comprises an integrated circuit (IC) electrically connected to the substrate, where the IC comprises semi-conductor components and a ground plane on one side of the IC. The ground plane is located between the IC semi-conductor components and the antenna. The ground plane is located across the aperture to reduce the area of the aperture and to reflect some of the radiation directed to the aperture back into the cavity.
    Type: Application
    Filed: December 10, 2015
    Publication date: June 15, 2017
    Inventors: Danny Elad, NOAM KAMINSKI, OFER MARKISH
  • Patent number: 9564671
    Abstract: An apparatus providing a direct chip to waveguide transition, comprising: one or more waveguides, a chip partially embedding each of the waveguides at a transition area positioned at a narrow side of each waveguide, and a transmitting element disposed at each of the transition areas, thereby providing one or more simultaneous, direct transitions between the chip and the waveguides.
    Type: Grant
    Filed: December 28, 2014
    Date of Patent: February 7, 2017
    Assignee: International Business Machines Corporation
    Inventors: Roi Carmon, Danny Elad, Noam Kaminski, Ofer Markish, Thomas Morf, Evgeny Shumaker
  • Patent number: 9547070
    Abstract: A device comprising: a housing mountable on a back surface of a handheld electronic device; a radar coupled with the housing, the radar comprising: (a) a receiver unit comprising at least one receiving antenna element; (b) a transmitter unit comprising at least one transmitting antenna element; an integrated circuit (IC) module; and an interface unit configured to operatively couple the radar with the handheld electronic device.
    Type: Grant
    Filed: December 26, 2013
    Date of Patent: January 17, 2017
    Assignee: International Business Machines Corporation
    Inventors: Dan Corcos, Danny Elad
  • Publication number: 20160190671
    Abstract: An apparatus providing a direct chip to waveguide transition, comprising: one or more waveguides, a chip partially embedding each of the waveguides at a transition area positioned at a narrow side of each waveguide, and a transmitting element disposed at each of the transition areas, thereby providing one or more simultaneous, direct transitions between the chip and the waveguides.
    Type: Application
    Filed: December 28, 2014
    Publication date: June 30, 2016
    Inventors: Roi Carmon, Danny Elad, Noam Kaminski, Ofer Markish, Thomas Morf, Evgeny Shumaker