Patents by Inventor Danny Eugene Scott

Danny Eugene Scott has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230011321
    Abstract: An embodiment of a PCD insert comprises an embodiment of a PCD element joined to a cemented carbide substrate at an interface. The PCD element has internal diamond surfaces defining interstices between them. The PCD element comprises a masked or passivated region and an unmasked or unpassivated region, the unmasked or unpassivated region defining a boundary with the substrate, the boundary being the interface. At least some of the internal diamond surfaces of the masked or passivated region contact a mask or passivation medium, and some or all of the interstices of the masked or passivated region and of the unmasked or unpassivated region are at least partially filled with an infiltrant material.
    Type: Application
    Filed: September 16, 2022
    Publication date: January 12, 2023
    Inventors: John Hewitt LIVERSAGE, Danny Eugene SCOTT, Humphrey Samkelo Lungisani SITHEBE, Kaveshini NAIDOO, Bronwyn Annette KAISER, Michael Lester FISH
  • Patent number: 11434136
    Abstract: Diamond bodies and methods of manufacture are disclosed. Diamond bodies are formed from at least a bimodal, alternatively a tri-modal or higher modal, feedstock having at least one fraction of modified diamond particles with a fine particle size (0.5-3.0 ?m) and at least one fraction of diamond particles with coarse particle size (15.0 to 30 ?m). During high pressure-high temperature processing, fine particle sized, modified diamond particles in the first fraction preferentially fracture to smaller sizes while preserving the morphology of coarse particle sized diamond particles in the second fraction. Diamond bodies incorporating the two fractions have a microstructure including second fraction diamond particles dispersed in a continuous matrix of first fraction modified diamond particles and exhibit improved wear characteristics, particularly for wear associated with drilling of geological formations.
    Type: Grant
    Filed: March 2, 2020
    Date of Patent: September 6, 2022
    Assignees: DIAMOND INNOVATIONS, INC., BAKER HUGHES, A GE COMPANY, LLC
    Inventors: Alexanne Johnson, Andrew Dean Gledhill, Danny Eugene Scott, Marc William Bird
  • Patent number: 10829999
    Abstract: Polycrystalline diamond compacts having interstitial diamonds and methods of forming polycrystalline diamond compact shaving interstitial diamonds with a quench cycle are described herein. In one embodiment, a polycrystalline diamond compact includes a substrate and a polycrystalline diamond body attached to the substrate. The polycrystalline diamond body includes a plurality of inter-bonded diamond grains that are attached to one another in an interconnected network of diamond grains and interstitial pockets between the inter-bonded diamond grains, and a plurality of interstitial diamond grains that are positioned in the interstitial pockets. Each of the plurality of interstitial diamond grains are attached to a single diamond grain of the interconnected network of diamond grains or other interstitial diamond grains.
    Type: Grant
    Filed: February 17, 2017
    Date of Patent: November 10, 2020
    Assignees: DIAMOND INNOVATIONS, INC., BAKER HUGHES, a GE Company LLC
    Inventors: Andrew Gledhill, Danny Eugene Scott, Marc William Bird
  • Publication number: 20200198978
    Abstract: Diamond bodies and methods of manufacture are disclosed. Diamond bodies are formed from at least a bimodal, alternatively a tri-modal or higher modal, feedstock having at least one fraction of modified diamond particles with a fine particle size (0.5-3.0 ?m) and at least one fraction of diamond particles with coarse particle size (15.0 to 30 ?m). During high pressure-high temperature processing, fine particle sized, modified diamond particles in the first fraction preferentially fracture to smaller sizes while preserving the morphology of coarse particle sized diamond particles in the second fraction. Diamond bodies incorporating the two fractions have a microstructure including second fraction diamond particles dispersed in a continuous matrix of first fraction modified diamond particles and exhibit improved wear characteristics, particularly for wear associated with drilling of geological formations.
    Type: Application
    Filed: March 2, 2020
    Publication date: June 25, 2020
    Inventors: Alexanne Johnson, Andrew Dean GLEDHILL, Danny Eugene SCOTT, Marc William BIRD
  • Publication number: 20200147759
    Abstract: An embodiment of a PCD insert comprises an embodiment of a PCD element joined to a cemented carbide substrate at an interface. The PCD element has internal diamond surfaces defining interstices between them. The PCD element comprises a masked or passivated region and an unmasked or unpassivated region, the unmasked or unpassivated region defining a boundary with the substrate, the boundary being the interface. At least some of the internal diamond surfaces of the masked or passivated region contact a mask or passivation medium, and some or all of the interstices of the masked or passivated region and of the unmasked or unpassivated region are at least partially filled with an infiltrant material.
    Type: Application
    Filed: January 2, 2020
    Publication date: May 14, 2020
    Inventors: John Hewitt LIVERSAGE, Danny Eugene SCOTT, Humphrey Samkelo Lungisani SITHEBE, Kaveshini NAIDOO, Bronwyn Annette KAISER, Michael Lester FISH
  • Patent number: 10618814
    Abstract: Diamond bodies and methods of manufacture are disclosed. Diamond bodies are formed from at least a bimodal, alternatively a tri-modal or higher modal, feedstock having at least one fraction of modified diamond particles with a fine particle size (0.5-3.0 ?m) and at least one fraction of diamond particles with coarse particle size (15.0 to 30 ?m). During high pressure—high temperature processing, fine particle sized, modified diamond particles in the first fraction preferentially fracture to smaller sizes while preserving the morphology of coarse particle sized diamond particles in the second fraction. Diamond bodies incorporating the two fractions have a microstructure including second fraction diamond particles dispersed in a continuous matrix of first fraction modified diamond particles and exhibit improved wear characteristics, particularly for wear associated with drilling of geological formations.
    Type: Grant
    Filed: April 9, 2018
    Date of Patent: April 14, 2020
    Assignees: DIAMOND INNOVATIONS, INC., BAKER HUGHES, a GE Company, LLC
    Inventors: Alexanne Johnson, Andrew Dean Gledhill, Danny Eugene Scott, Marc William Bird
  • Publication number: 20190106327
    Abstract: Diamond bodies and methods of manufacture are disclosed. Diamond bodies are formed from at least a bimodal, alternatively a tri-modal or higher modal, feedstock having at least one fraction of modified diamond particles with a fine particle size (0.5-3.0 ?m) and at least one fraction of diamond particles with coarse particle size (15.0 to 30 ?m). During high pressure—high temperature processing, fine particle sized, modified diamond particles in the first fraction preferentially fracture to smaller sizes while preserving the morphology of coarse particle sized diamond particles in the second fraction. Diamond bodies incorporating the two fractions have a microstructure including second fraction diamond particles dispersed in a continuous matrix of first fraction modified diamond particles and exhibit improved wear characteristics, particularly for wear associated with drilling of geological formations.
    Type: Application
    Filed: April 9, 2018
    Publication date: April 11, 2019
    Inventors: Alexanne JOHNSON, Andrew Dean GLEDHILL, Danny Eugene SCOTT, Marc William BIRD
  • Patent number: 10017390
    Abstract: Diamond bodies and methods of manufacture are disclosed. Diamond bodies are formed from at least a bimodal, alternatively a tri-modal or higher modal, feedstock having at least one fraction of modified diamond particles with a fine particle size (0.5-3.0 ?m) and at least one fraction of diamond particles with coarse particle size (15.0 to 30 ?m). During high pressure—high temperature processing, fine particle sized, modified diamond particles in the first fraction preferentially fracture to smaller sizes while preserving the morphology of coarse particle sized diamond particles in the second fraction. Diamond bodies incorporating the two fractions have a microstructure including second fraction diamond particles dispersed in a continuous matrix of first fraction modified diamond particles and exhibit improved wear characteristics, particularly for wear associated with drilling of geological formations.
    Type: Grant
    Filed: March 18, 2016
    Date of Patent: July 10, 2018
    Assignees: DIAMOND INNOVATIONS, INC., BAKER HUGHES, A GE COMPANY, LLC
    Inventors: Alexanne Johnson, Andrew Dean Gledhill, Danny Eugene Scott, Marc William Bird
  • Publication number: 20180162779
    Abstract: A polycrystalline diamond (PCD) compact and method for making the compact are provided. The method includes bringing a first PCD wafer and a second PCD wafer together at an interface in the presence of a bonding agent to form an unbonded assembly and bonding the wafers together at the interface at a pressure and temperature at which diamond is thermodynamically stable. The first PCD wafer is more thermally stable than the second PCD wafer.
    Type: Application
    Filed: February 12, 2018
    Publication date: June 14, 2018
    Inventors: John Hewitt Liversage, lain Patrick Goudemond, Danny Eugene Scott
  • Patent number: 9970240
    Abstract: A polycrystalline diamond (PCD) composite compact element comprising a PCD structure bonded to a cemented carbide substrate, in which at least a peripheral region of the substrate comprises cemented carbide material having a mean free path (MFP) characteristic of at least about 0.1 microns and at most about 0.7 microns; and an elastic limit of at least about 1.9 GPa.
    Type: Grant
    Filed: January 13, 2014
    Date of Patent: May 15, 2018
    Assignees: Element Six GmbH, Baker Hughes Incorporated
    Inventors: Danny Eugene Scott, Jimmy Wayne Eason, David Alexander Curry, Igor Yuri Konyashin
  • Publication number: 20170234077
    Abstract: Polycrystalline diamond compacts having interstitial diamonds and methods of forming polycrystalline diamond compact shaving interstitial diamonds with a quench cycle are described herein. In one embodiment, a polycrystalline diamond compact includes a substrate and a polycrystalline diamond body attached to the substrate. The polycrystalline diamond body includes a plurality of inter-bonded diamond grains that are attached to one another in an interconnected network of diamond grains and interstitial pockets between the inter-bonded diamond grains, and a plurality of interstitial diamond grains that are positioned in the interstitial pockets. Each of the plurality of interstitial diamond grains are attached to a single diamond grain of the interconnected network of diamond grains or other interstitial diamond grains.
    Type: Application
    Filed: February 17, 2017
    Publication date: August 17, 2017
    Inventors: Andrew GLEDHILL, Danny Eugene SCOTT, Marc William BIRD
  • Patent number: 9719308
    Abstract: A polycrystalline diamond (PCD) composite compact element 100 comprising a substrate 130, a PCD structure 120 bonded to the substrate 130, and a bond material in the form of a bond layer 140 bonding the PCD structure 120 to the substrate 130; the PCD structure 120 being thermally stable and having a mean Young's modulus of at least about 800 GPa, the PCD structure 120 having an interstitial mean free path of at least about 0.05 microns and at most about 1.5 microns; the standard deviation of the mean free path being at least about 0.05 microns and at most about 1.5 microns. Embodiments of the PCD composite compact element may be for a tool for cutting, milling, grinding, drilling, earth boring, rock drilling or other abrasive applications, such as the cutting and machining of metal.
    Type: Grant
    Filed: August 21, 2014
    Date of Patent: August 1, 2017
    Assignees: Element Six Limited, Baker Hughes Incorporated
    Inventors: Danny Eugene Scott, Kurtis Karl Schmitz, Clement David Van Der Riet, Antionette Can
  • Publication number: 20160289078
    Abstract: Diamond bodies and methods of manufacture are disclosed. Diamond bodies are formed from at least a bimodal, alternatively a tri-modal or higher modal, feedstock having at least one fraction of modified diamond particles with a fine particle size (0.5-3.0 ?m) and at least one fraction of diamond particles with coarse particle size (15.0 to 30 ?m). During high pressure—high temperature processing, fine particle sized, modified diamond particles in the first fraction preferentially fracture to smaller sizes while preserving the morphology of coarse particle sized diamond particles in the second fraction. Diamond bodies incorporating the two fractions have a microstructure including second fraction diamond particles dispersed in a continuous matrix of first fraction modified diamond particles and exhibit improved wear characteristics, particularly for wear associated with drilling of geological formations.
    Type: Application
    Filed: March 18, 2016
    Publication date: October 6, 2016
    Inventors: Alexanne JOHNSON, Andrew Dean GLEDHILL, Danny Eugene SCOTT, Marc William BIRD
  • Publication number: 20160167200
    Abstract: An embodiment of a PCD insert comprises an embodiment of a PCD element joined to a cemented carbide substrate at an interface. The PCD element has internal diamond surfaces defining interstices between them. The PCD element comprises a masked or passivated region and an unmasked or unpassivated region, the unmasked or unpassivated region defining a boundary with the substrate, the boundary being the interface. At least some of the internal diamond surfaces of the masked or passivated region contact a mask or passivation medium, and some or all of the interstices of the masked or passivated region and of the unmasked or unpassivated region are at least partially filled with an infiltrant material.
    Type: Application
    Filed: February 24, 2016
    Publication date: June 16, 2016
    Inventors: John Hewitt Liversage, Danny Eugene Scott, Humphrey Samkelo Lungisani Sithebe, Kaveshini Naidoo, Bronwyn Annette Kaiser, Michael Lester Fish
  • Publication number: 20160159693
    Abstract: A polycrystalline diamond (PCD) compact and method for making the compact are provided. The method includes bringing a first PCD wafer and a second PCD wafer together at an interface in the presence of a bonding agent to form an unbonded assembly and bonding the wafers together at the interface at a pressure and temperature at which diamond is thermodynamically stable. The first PCD wafer is more thermally stable than the second PCD wafer.
    Type: Application
    Filed: February 8, 2016
    Publication date: June 9, 2016
    Inventors: John Hewitt LIVERSAGE, Iain Patrick GOUDEMOND, Danny Eugene SCOTT
  • Patent number: 9297213
    Abstract: A PCD insert comprises a PCD element joined to a cemented carbide substrate at an interface. The PCD element has internal diamond surfaces defining interstices between them. The PCD element comprises a masked or passivated region and an unmasked or unpassivated region, the unmasked or unpassivated region defining a boundary with the substrate, the boundary being the interface. At least some of the internal diamond surfaces of the masked or passivated region contact a mask or passivation medium, and some or all of the interstices of the masked or passivated region and of the unmasked or unpassivated region are at least partially filled with an infiltrant material.
    Type: Grant
    Filed: March 8, 2010
    Date of Patent: March 29, 2016
    Assignees: BAKER HUGHES INCORPORATED, ELEMENT SIX LIMITED
    Inventors: John Hewitt Liversage, Danny Eugene Scott, Humphrey Samkelo Lungisani Sithebe, Kaveshini Naidoo, Bronwyn Annette Kaiser, Michael Lester Fish
  • Patent number: 9255312
    Abstract: A polycrystalline diamond (PCD) compact and method for making the compact are provided. The method includes bringing a first PCD wafer and a second PCD wafer together at an interface in the presence of a bonding agent to form an unbonded assembly and bonding the wafers together at the interface at a pressure and temperature at which diamond is thermodynamically stable. The first PCD wafer is more thermally stable than the second PCD wafer.
    Type: Grant
    Filed: April 8, 2009
    Date of Patent: February 9, 2016
    Inventors: John Hewitt Liversage, Iain Patrick Goudemond, Danny Eugene Scott
  • Publication number: 20150083502
    Abstract: A polycrystalline diamond (PCD) composite compact element 100 comprising a substrate 130, a PCD structure 120 bonded to the substrate 130, and a bond material in the form of a bond layer 140 bonding the PCD structure 120 to the substrate 130; the PCD structure 120 being thermally stable and having a mean Young's modulus of at least about 800 GPa, the PCD structure 120 having an interstitial mean free path of at least about 0.05 microns and at most about 1.5 microns; the standard deviation of the mean free path being at least about 0.05 microns and at most about 1.5 microns. Embodiments of the PCD composite compact element may be for a tool for cutting, milling, grinding, drilling, earth boring, rock drilling or other abrasive applications, such as the cutting and machining of metal.
    Type: Application
    Filed: August 21, 2014
    Publication date: March 26, 2015
    Inventors: Danny Eugene Scott, Kurtis Karl Schmitz, Clement David Van Der Riet, Antionette Can
  • Publication number: 20140262533
    Abstract: A polycrystalline diamond (PCD) composite compact element comprising a PCD structure bonded to a cemented carbide substrate, in which at least a peripheral region of the substrate comprises cemented carbide material having a mean free path (MFP) characteristic of at least about 0.1 microns and at most about 0.7 microns; and an elastic limit of at least about 1.9 GPa.
    Type: Application
    Filed: January 13, 2014
    Publication date: September 18, 2014
    Inventors: Danny Eugene Scott, Jimmy Wayne Eason, David Alexander Curry, Igor Yuri Konyashin
  • Publication number: 20120055717
    Abstract: An embodiment of a PCD insert comprises an embodiment of a PCD element joined to a cemented carbide substrate at an interface. The PCD element has internal diamond surfaces defining interstices between them. The PCD element comprises a masked or passivated region and an unmasked or unpassivated region, the unmasked or unpassivated region defining a boundary with the substrate, the boundary being the interface. At least some of the internal diamond surfaces of the masked or passivated region contact a mask or passivation medium, and some or ail of the interstices of the masked or passivated region and of the unmasked or unpassivated region are at least partially filled with an infiltrant material.
    Type: Application
    Filed: March 8, 2010
    Publication date: March 8, 2012
    Inventors: John Hewitt Liversage, Danny Eugene Scott, Humphrey Samkelo Lungisani Sithebe, Kaveshini Naidoo, Bronwyn Annette Kaiser, Michael Lester Fish