Patents by Inventor Danny M. Kim

Danny M. Kim has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11846685
    Abstract: A system, apparatus, and method for determining a velocity. A voltage is detected for a planar sensor array while the planar sensor array is moving though a magnetic field, wherein the planar sensor array comprises conductive channels formed in a substrate, wherein the conductive channels are connected in series, and wherein the voltage is generated by the planar sensor array in response to a movement of the planar sensor array through the magnetic field and wherein the voltage is proportional to a velocity of the planar sensor array moving through the magnetic field. The velocity of the planar sensor array is determined using the voltage detected for the conductive channels.
    Type: Grant
    Filed: July 22, 2022
    Date of Patent: December 19, 2023
    Assignee: The Boeing Company
    Inventors: Matthew J. Pelliccione, Danny M. Kim, Travis M. Autry, Rongsheng Li, Brian C. Grubel, James H. Kober
  • Patent number: 11714231
    Abstract: A semiconductor structure comprises a substrate; an oxide layer on the substrate; a set of group III nitride layers on the oxide layer; and a set of silicon carbide layers located on the set of group III nitride layers.
    Type: Grant
    Filed: May 14, 2020
    Date of Patent: August 1, 2023
    Assignee: The Boeing Company
    Inventors: Samuel J. Whiteley, Daniel Yap, Edward H. Chen, Danny M. Kim, Thaddeus D. Ladd
  • Patent number: 11361964
    Abstract: A method, apparatus, and system for forming a semiconductor structure. A first oxide layer located on a set of group III nitride layers formed on a silicon carbide substrate is bonded to a second oxide layer located on a carrier substrate to form an oxide layer located between the carrier substrate and the set of group III nitride layers. The silicon carbide substrate has a doped layer. The silicon carbide substrate having the doped layer is etched using a photo-electrochemical etching process, wherein a doping level of the doped layer is such that the doped layer is removed and a silicon carbide layer in the silicon carbide substrate remains unetched. The semiconductor structure is formed using the silicon carbide layer and the set of group III nitride layers.
    Type: Grant
    Filed: May 14, 2020
    Date of Patent: June 14, 2022
    Assignee: The Boeing Company
    Inventors: Samuel J. Whiteley, Daniel Yap, Edward H. Chen, Danny M. Kim, Thaddeus D. Ladd
  • Patent number: 11361965
    Abstract: Methods of in situ fabrication and formation of horizontal nanowires for a semiconductor device employ non-catalytic selective area epitaxial growth to selectively grow a semiconductor material in a selective area opening of predefined asymmetrical geometry. The selective area opening is defined in a dielectric layer to expose a semiconductor layer underlying the dielectric layer. The non-catalytic selective area epitaxial growth is performed at a growth temperature sufficient to also in situ form a linear stress crack of nanoscale width that is nucleated from a location in a vicinity of the selective area opening and that propagates in a uniform direction along a crystal plane of the semiconductor layer in both the semiconductor layer and the dielectric layer as a linear nanogap template. The semiconductor material is further selectively grown to fill the linear nanogap template to in situ form the nanowire that is uniformly linear.
    Type: Grant
    Filed: October 19, 2020
    Date of Patent: June 14, 2022
    Assignee: HRL Laboratories, LLC
    Inventors: Danny M. Kim, Rongming Chu, Yu Cao, Thaddeus D. Ladd
  • Publication number: 20210358747
    Abstract: A method, apparatus, and system for forming a semiconductor structure. A first oxide layer located on a set of group III nitride layers formed on a silicon carbide substrate is bonded to a second oxide layer located on a carrier substrate to form an oxide layer located between the carrier substrate and the set of group III nitride layers. The silicon carbide substrate has a doped layer. The silicon carbide substrate having the doped layer is etched using a photo-electrochemical etching process, wherein a doping level of the doped layer is such that the doped layer is removed and a silicon carbide layer in the silicon carbide substrate remains unetched. The semiconductor structure is formed using the silicon carbide layer and the set of group III nitride layers.
    Type: Application
    Filed: May 14, 2020
    Publication date: November 18, 2021
    Inventors: Samuel J. Whiteley, Daniel Yap, Edward H. Chen, Danny M. Kim, Thaddeus D. Ladd
  • Publication number: 20210356658
    Abstract: A semiconductor structure comprises a substrate; an oxide layer on the substrate; a set of group III nitride layers on the oxide layer; and a set of silicon carbide layers located on the set of group III nitride layers.
    Type: Application
    Filed: May 14, 2020
    Publication date: November 18, 2021
    Inventors: Samuel J. Whiteley, Daniel Yap, Edward H. Chen, Danny M. Kim, Thaddeus D. Ladd
  • Patent number: 10937650
    Abstract: Methods of in situ fabrication and formation of horizontal nanowires for a semiconductor device employ non-catalytic selective area epitaxial growth to selectively grow a semiconductor material in a selective area opening of predefined asymmetrical geometry. The selective area opening is defined in a dielectric layer to expose a semiconductor layer underlying the dielectric layer. The non-catalytic selective area epitaxial growth is performed at a growth temperature sufficient to also in situ form a linear stress crack of nanoscale width that is nucleated from a location in a vicinity of the selective area opening and that propagates in a uniform direction along a crystal plane of the semiconductor layer in both the semiconductor layer and the dielectric layer as a linear nanogap template. The semiconductor material is further selectively grown to fill the linear nanogap template to in situ form the nanowire that is uniformly linear.
    Type: Grant
    Filed: November 6, 2019
    Date of Patent: March 2, 2021
    Assignee: HRL Laboratories, LLC
    Inventors: Danny M. Kim, Rongming Chu, Yu Cao, Thaddeus D. Ladd
  • Patent number: 10535518
    Abstract: Methods of in situ fabrication and formation of horizontal nanowires for a semiconductor device employ non-catalytic selective area epitaxial growth to selectively grow a semiconductor material in a selective area opening of predefined asymmetrical geometry. The selective area opening is defined in a dielectric layer to expose a semiconductor layer underlying the dielectric layer. The non-catalytic selective area epitaxial growth is performed at a growth temperature sufficient to also in situ form a linear stress crack of nanoscale width that is nucleated from a location in a vicinity of the selective area opening and that propagates in a uniform direction along a crystal plane of the semiconductor layer in both the semiconductor layer and the dielectric layer as a linear nanogap template. The semiconductor material is further selectively grown to fill the linear nanogap template to in situ form the nanowire that is uniformly linear.
    Type: Grant
    Filed: March 26, 2018
    Date of Patent: January 14, 2020
    Assignee: HRL Laboratories, LLC
    Inventors: Danny M. Kim, Rongming Chu, Yu Cao, Thaddeus D. Ladd
  • Patent number: 10387792
    Abstract: A device for storing and/or transferring quantum data. The device has a plurality of elongate semiconductor structures arranged in side by said with each elongate semiconductor structure having a quantum well layer of one semiconductor material disposed between upper and lower layers of a different semiconductor material which share the same or essentially the same crystalline structure as that of the quantum well layer. Neighboring ones of the elongate semiconductor structures share a region forming a constriction between the neighboring ones of the elongate semiconductor structures.
    Type: Grant
    Filed: June 29, 2017
    Date of Patent: August 20, 2019
    Assignee: HRL Laboratories, LLC
    Inventors: Thaddeus D. Ladd, Andrey A. Kiselev, Danny M. Kim, Rongming Chu