Patents by Inventor Danny S. Moshe

Danny S. Moshe has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11725989
    Abstract: A microelectromechanical system (MEMS) (10), and a microelectromechanical (MEM) optical interferometer (18), for hyper-spectral imaging and analysis. System (10) includes matrix configured collimating micro lens (16), for receiving and collimating electromagnetic radiation (60) emitted by objects (12) in a scene or sample (14); microelectromechanical optical interferometer (18), for forming divided collimated object emission beam (72) having an optical path difference, and for generating an interference image exiting optical interferometer (18); matrix configured focusing micro lens (20); micro detector (22), for detecting and recording generated interference images; and micro central programming and signal processing unit (24). Applicable for on-line (e.g., real time or near-real time) or off-line hyper-spectral imaging and analyzing, on a miniaturized or ‘micro’ (sub-centimeter [1 cm (10 mm) or less], or sub-millimeter) scale, essentially any types or kinds of biological, physical, or/and chemical, (i.e.
    Type: Grant
    Filed: February 25, 2019
    Date of Patent: August 15, 2023
    Assignee: Green Vision Systems Ltd.
    Inventor: Danny S. Moshe
  • Patent number: 11622714
    Abstract: Methods and apparatuses for characterizing life quality of a living entity via hyper-spectral imaging and analysis, and applications thereof, such as managing life quality of a living entity. Includes acquiring hyper-spectral imaging data and information of: anatomical features of the living entity, and substances consumable by the living entity; generating and maintaining a living entity-specific database containing data and information about the living entity; processing acquired living entity anatomical feature and consumable substance hyper-spectral imaging data and information, and living entity data and information; using processed data and information to generate living entity life quality data and information characteristic of life quality of the living entity. Applicable to any living entity (human, animal, plant). Applicable to integrated microelectromechanical (MEM) [chip level] components in desk top devices or miniature smart/intelligent devices.
    Type: Grant
    Filed: December 15, 2015
    Date of Patent: April 11, 2023
    Assignee: Green Vision Systems Ltd.
    Inventor: Danny S. Moshe
  • Publication number: 20220120674
    Abstract: A method of detecting a biological substance in a sample, comprises: illuminate the sample by light; imaging the illuminated sample by Fourier transform hyperspectral imaging; and analyzing the obtained hyperspectral image to detect the biological substance in a sample.
    Type: Application
    Filed: October 21, 2021
    Publication date: April 21, 2022
    Applicant: Green Vision Systems Ltd.
    Inventor: Danny S. MOSHE
  • Publication number: 20190277698
    Abstract: A microelectromechanical system (MEMS) (10), and a microelectromechanical (MEM) optical interferometer (18), for hyper-spectral imaging and analysis. System (10) includes matrix configured collimating micro lens (16), for receiving and collimating electromagnetic radiation (60) emitted by objects (12) in a scene or sample (14); microelectromechanical optical interferometer (18), for forming divided collimated object emission beam (72) having an optical path difference, and for generating an interference image exiting optical interferometer (18); matrix configured focusing micro lens (20); micro detector (22), for detecting and recording generated interference images; and micro central programming and signal processing unit (24). Applicable for on-line (e.g., real time or near-real time) or off-line hyper-spectral imaging and analyzing, on a miniaturized or ‘micro’ (sub-centimeter [1 cm (10 mm) or less], or sub-millimeter) scale, essentially any types or kinds of biological, physical, or/and chemical, (i.e.
    Type: Application
    Filed: February 25, 2019
    Publication date: September 12, 2019
    Applicant: Green Vision Systems Ltd.
    Inventor: Danny S. MOSHE
  • Patent number: 10317571
    Abstract: Real-time monitoring, parametric profiling, and regulating contaminated outdoor air particulate matter throughout a region, via hyper-spectral imaging and analysis.
    Type: Grant
    Filed: June 28, 2011
    Date of Patent: June 11, 2019
    Assignee: Green Vision Systems Ltd.
    Inventor: Danny S. Moshe
  • Publication number: 20180296095
    Abstract: Methods and apparatuses for characterizing life quality of a living entity via hyper-spectral imaging and analysis, and applications thereof, such as managing life quality of a living entity. Includes acquiring hyper-spectral imaging data and information of: anatomical features of the living entity, and substances consumable by the living entity; generating and maintaining a living entity-specific database containing data and information about the living entity; processing acquired living entity anatomical feature and acquired living entity consumable substance hyper-spectral imaging data and information, and living entity data and information; using processed data and information to generate living entity life quality data and information characteristic of life quality of the living entity. Applicable to any live or living entity (human, animal, plant). Applicable as a stand-alone system or as integrated microelectromechanical (MEM) [chip level] components as part of a smart or intelligent device.
    Type: Application
    Filed: July 1, 2015
    Publication date: October 18, 2018
    Inventor: Danny S. MOSHE
  • Publication number: 20160166196
    Abstract: Methods and apparatuses for characterizing life quality of a living entity via hyper-spectral imaging and analysis, and applications thereof, such as managing life quality of a living entity. Includes acquiring hyper-spectral imaging data and information of: anatomical features of the living entity, and substances consumable by the living entity; generating and maintaining a living entity-specific database containing data and information about the living entity; processing acquired living entity anatomical feature and consumable substance hyper-spectral imaging data and information, and living entity data and information; using processed data and information to generate living entity life quality data and information characteristic of life quality of the living entity. Applicable to any living entity (human, animal, plant). Applicable to integrated microelectromechanical (MEM) [chip level] components in desk top devices or miniature smart/intelligent devices.
    Type: Application
    Filed: December 15, 2015
    Publication date: June 16, 2016
    Inventor: Danny S. MOSHE
  • Patent number: 9002113
    Abstract: Processing and analyzing hyper-spectral image data and information via dynamic database updating. (a) processing/analyzing representations of objects within a sub set of the hyper spectral image data and information, using a first reference database of hyper spectral image data, information, and parameters, and, a second reference database of biological, chemical, or/and physical data, information, and parameters. Identifying objects of non-interest, and objects of potential interest, from the data/information sub-set. (b) processing/analyzing identified objects of potential interest, by further using first and second reference databases. Determining absence or presence of objects of interest, additional objects of non-interest, and non-classifiable objects of potential interest, from the data/information sub set. (c) updating first and second reference databases, using results of (a) and (b), for forming updated first and second reference databases.
    Type: Grant
    Filed: March 1, 2007
    Date of Patent: April 7, 2015
    Assignee: Green Vision Systems Ltd.
    Inventor: Danny S. Moshe
  • Patent number: 8953158
    Abstract: A system for grading an agricultural product employing hyper-spectral imaging and analysis. The system includes at least one light source for providing a beam of light, an interferometer or a prism array for dispersing electromagnetic radiation emitted from said agricultural product into a corresponding spectral image, a light measuring device for detecting component wavelengths within the corresponding spectral image and a processor operable to compare the detected component wavelengths to a database of previously graded agricultural products to identify and select a grade for the agricultural product. A method for grading an agricultural product via hyper-spectral imaging and analysis is also provided.
    Type: Grant
    Filed: September 2, 2010
    Date of Patent: February 10, 2015
    Inventors: Danny S. Moshe, Henry M. Dante, Seetharama C. Deevi, Curtis M. Hinton
  • Patent number: 8817253
    Abstract: Method for hyper-spectral imaging and analysis of a sample of matter, for identifying and characterizing an object of interest therein. Preparing test solution or suspension of the sample, including adding thereto a spectral marker specific to object of interest, such that if object of interest is in test solution or suspension, object of interest becomes a hyper-spectrally active target which is hyper-spectrally detectable and identifiable; adding to test solution or suspension a background reducing chemical, for reducing background interfering effects caused by presence of objects of non-interest in test solution or suspension, thereby increasing hyper-spectral detectability of hyper-spectrally active target in test solution or suspension; generating and collecting hyper-spectral image data and information of test solution or suspension; and, processing and analyzing thereof.
    Type: Grant
    Filed: April 16, 2012
    Date of Patent: August 26, 2014
    Assignee: Green Vision Systems Ltd.
    Inventors: Danny S. Moshe, Vladimir Weinstein
  • Publication number: 20140078509
    Abstract: A microelectromechanical system (MEMS) (10), and a microelectromechanical (MEM) optical interferometer (18), for hyper-spectral imaging and analysis. System (10) includes matrix configured collimating micro lens (16), for receiving and collimating electromagnetic radiation (60) emitted by objects (12) in a scene or sample (14); microelectromechanical optical interferometer (18), for forming divided collimated object emission beam (72) having an optical path difference, and for generating an interference image exiting optical interferometer (18); matrix configured focusing micro lens (20); micro detector (22), for detecting and recording generated interference images; and micro central programming and signal processing unit (24). Applicable for on-line (e.g., real time or near-real time) or off-line hyper-spectral imaging and analyzing, on a miniaturized or ‘micro’ (sub-centimeter [1 cm (10 mm) or less], or sub-millimeter) scale, essentially any types or kinds of biological, physical, or/and chemical, (i.e.
    Type: Application
    Filed: May 2, 2012
    Publication date: March 20, 2014
    Applicant: Green Vision Systems Ltd.
    Inventor: Danny S. Moshe
  • Publication number: 20130110400
    Abstract: Real-time monitoring, parametric profiling, and regulating contaminated outdoor air particulate matter throughout a region, via hyper-spectral imaging and analysis.
    Type: Application
    Filed: June 28, 2011
    Publication date: May 2, 2013
    Applicant: GREEN VISION SYSTEMS LTD.
    Inventor: Danny S. Moshe
  • Publication number: 20120250025
    Abstract: A system for grading an agricultural product employing hyper-spectral imaging and analysis. The system includes at least one light source for providing a beam of light, an interferometer or a prism array for dispersing electromagnetic radiation emitted from said agricultural product into a corresponding spectral image, a light measuring device for detecting component wavelengths within the corresponding spectral image and a processor operable to compare the detected component wavelengths to a database of previously graded agricultural products to identify and select a grade for the agricultural product. A method for grading an agricultural product via hyper-spectral imaging and analysis is also provided.
    Type: Application
    Filed: September 2, 2010
    Publication date: October 4, 2012
    Inventors: Danny S. Moshe, Henry M. Dante, Seetharama C. Deevi, Curtis M. Hinton
  • Publication number: 20120202192
    Abstract: Method for hyper-spectral imaging and analysis of a sample of matter, for identifying and characterizing an object of interest therein. Preparing test solution or suspension of the sample, including adding thereto a spectral marker specific to object of interest, such that if object of interest is in test solution or suspension, object of interest becomes a hyper-spectrally active target which is hyper-spectrally detectable and identifiable; adding to test solution or suspension a background reducing chemical, for reducing background interfering effects caused by presence of objects of non-interest in test solution or suspension, thereby increasing hyper-spectral detectability of hyper-spectrally active target in test solution or suspension; generating and collecting hyper-spectral image data and information of test solution or suspension; and, processing and analyzing thereof.
    Type: Application
    Filed: April 16, 2012
    Publication date: August 9, 2012
    Applicant: Green Vision Systems Ltd.
    Inventors: Danny S. MOSHE, Vladimir WEINSTEIN
  • Patent number: 8159661
    Abstract: Method for hyper-spectral imaging and analysis of a sample of matter, for identifying and characterizing an object of interest therein. Preparing test solution or suspension of the sample, including adding thereto a spectral marker specific to object of interest, such that if object of interest is in test solution or suspension, object of interest becomes a hyper-spectrally active target which is hyper spectrally detectable and identifiable; adding to test solution or suspension a background reducing chemical, for reducing background interfering effects caused by presence of objects of non-interest in test solution or suspension, thereby increasing hyper spectral detectability of hyper spectrally active target in test solution or suspension; generating and collecting hyper-spectral image data and information of test solution or suspension; and, processing and analyzing thereof.
    Type: Grant
    Filed: February 14, 2008
    Date of Patent: April 17, 2012
    Assignee: Green Vision Systems Ltd.
    Inventors: Danny S. Moshe, Vladimir Weinstein
  • Publication number: 20100028859
    Abstract: Method for hyper-spectral imaging and analysis of a sample of matter, for identifying and characterizing an object of interest therein. Preparing test solution or suspension of the sample, including adding thereto a spectral marker specific to object of interest, such that if object of interest is in test solution or suspension, object of interest becomes a hyper-spectrally active target which is hyper spectrally detectable and identifiable; adding to test solution or suspension a background reducing chemical, for reducing background interfering effects caused by presence of objects of non-interest in test solution or suspension, thereby increasing hyper spectral detectability of hyper spectrally active target in test solution or suspension; generating and collecting hyper-spectral image data and information of test solution or suspension; and, processing and analyzing thereof.
    Type: Application
    Filed: February 14, 2008
    Publication date: February 4, 2010
    Applicant: GREEN VISION SYSTEMS LTD.
    Inventors: Danny S. Moshe, Vladimir Weinstein
  • Patent number: 7599544
    Abstract: Authenticating an authentic article having an authentication mark. Acquiring a set of spectral images of the authentication mark, for forming a set of single-authentication mark spectral fingerprint data (FIG. 1). Identifying at least one spectral shift in the set of single-authentication mark spectral fingerprint data, for forming an intra-authentication mark physicochemical region group including sub-sets of intra-authentication mark spectral fingerprint pattern data, such that data elements in each sub-set are shifted relative to corresponding data elements in remaining sub-sets in the same intra-authentication mark physicochemical region group (FIG. 2). Forming a set of intra-authentication mark physicochemical properties and characteristics data relating to the imaged authentication mark, by performing pattern recognition and classification analysis on the intra-authentication mark physicochemical region group (FIG. 3).
    Type: Grant
    Filed: December 1, 2004
    Date of Patent: October 6, 2009
    Assignee: Green Vision Systems Ltd
    Inventor: Danny S. Moshe
  • Publication number: 20090210447
    Abstract: Processing and analyzing hyper-spectral image data and information via dynamic database updating. (a) processing/analyzing representations of objects within a sub set of the hyper spectral image data and information, using a first reference database of hyper spectral image data, information, and parameters, and, a second reference database of biological, chemical, or/and physical data, information, and parameters. Identifying objects of non-interest, and objects of potential interest, from the data/information sub-set. (b) processing/analyzing identified objects of potential interest, by further using first and second reference databases. Determining absence or presence of objects of interest, additional objects of non-interest, and non-classifiable objects of potential interest, from the data/information sub set. (c) updating first and second reference databases, using results of (a) and (b), for forming updated first and second reference databases.
    Type: Application
    Filed: March 1, 2007
    Publication date: August 20, 2009
    Applicant: GREEN VISON SYSTMES LTD.
    Inventor: Danny S. Moshe
  • Publication number: 20080192992
    Abstract: Authenticating an authentic article having an authentication mark. Acquiring a set of spectral images of the authentication mark, for forming a set of single-authentication mark spectral fingerprint data (FIG. 1). Identifying at least one spectral shift in the set of single-authentication mark spectral fingerprint data, for forming an intra-authentication mark physicochemical region group including sub-sets of intra-authentication mark spectral fingerprint pattern data, such that data elements in each sub-set are shifted relative to corresponding data elements in remaining sub-sets in the same intra-authentication mark physicochemical region group (FIG. 2). Forming a set of intra-authentication mark physicochemical properties and characteristics data relating to the imaged authentication mark, by performing pattern recognition and classification analysis on the intra-authentication mark physicochemical region group (FIG. 3).
    Type: Application
    Filed: December 1, 2004
    Publication date: August 14, 2008
    Inventor: Danny S. Moshe
  • Patent number: 7411682
    Abstract: Real time high speed high resolution hyper-spectral imaging.
    Type: Grant
    Filed: April 7, 2003
    Date of Patent: August 12, 2008
    Assignee: Green Vision Systems Ltd.
    Inventor: Danny S. Moshe