Patents by Inventor Danny W. Muse

Danny W. Muse has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10748867
    Abstract: The present invention provides a system and method for making a three-dimensional electronic, electromagnetic or electromechanical component/device by: (1) creating one or more layers of a three-dimensional substrate by depositing a substrate material in a layer-by-layer fashion, wherein the substrate includes a plurality of interconnection cavities and component cavities; (2) filling the interconnection cavities with a conductive material; and (3) placing one or more components in the component cavities.
    Type: Grant
    Filed: January 4, 2012
    Date of Patent: August 18, 2020
    Assignee: Board of Regents, The University of Texas System
    Inventors: Ryan B. Wicker, Eric MacDonald, Francisco Medina, David Espalin, Danny W. Muse
  • Patent number: 10660214
    Abstract: Systems and methods for creating interlayer mechanical or electrical attachments or connections using filaments within a three-dimensional structure, structural component, or structural electronic, electromagnetic, or electromechanical component/device.
    Type: Grant
    Filed: June 17, 2016
    Date of Patent: May 19, 2020
    Assignee: Board of Regents, The University of Texas System
    Inventors: Ryan B. Wicker, Francisco Medina, Eric MacDonald, Danny W. Muse, David Espalin
  • Patent number: 10518490
    Abstract: The present invention provides systems and methods for embedding a filament or filament mesh in a three-dimensional structure, structural component, or structural electronic, electromagnetic or electromechanical component/device by providing at least a first layer of a substrate material, and embedding at least a portion of a filament or filament mesh within the first layer of the substrate material such the portion of the filament or filament mesh is substantially flush with a top surface of the first layer and a substrate material in a flowable state is displaced by the portion of the filament and does not substantially protrude above the top surface of the first layer, allowing the continuation of an additive manufacturing process above the embedded filament or filament mesh.
    Type: Grant
    Filed: March 14, 2013
    Date of Patent: December 31, 2019
    Assignee: Board of Regents, The University of Texas System
    Inventors: Ryan B. Wicker, Francisco Medina, Eric MacDonald, Danny W. Muse, David Espalin
  • Patent number: 10335673
    Abstract: An electronic gaming die includes an enclosure, a flexible substrate, a number of light emitting diodes, a sensor, a processor and a battery. The enclosure has N sides where N is equal to or greater than 4. The flexible substrate folds into N sides and fits into an interior of the enclosure, wherein each side has an inner face, an outer face and is assigned an integer from 1 to N. The light emitting diodes are disposed on the outer face of each side of the flexible substrate, wherein the number of light emitting diodes equals the integer assigned to the side of the flexible substrate. The sensor, processor and battery are disposed on one of the inner faces of the flexible substrate.
    Type: Grant
    Filed: January 19, 2018
    Date of Patent: July 2, 2019
    Assignee: BOARD OF REGENTS, THE UNIVERSITY OF TEXAS SYSTEM
    Inventors: Danny W. Muse, Ryan Wicker, Eric MacDonald, Rodolfo Salas, Francisco Medina
  • Publication number: 20180140941
    Abstract: An electronic gaming die includes an enclosure, a flexible substrate, a number of light emitting diodes, a sensor, a processor and a battery. The enclosure has N sides where N is equal to or greater than 4. The flexible substrate folds into N sides and fits into an interior of the enclosure, wherein each side has an inner face, an outer face and is assigned an integer from 1 to N. The light emitting diodes are disposed on the outer face of each side of the flexible substrate, wherein the number of light emitting diodes equals the integer assigned to the side of the flexible substrate. The sensor, processor and battery are disposed on one of the inner faces of the flexible substrate.
    Type: Application
    Filed: January 19, 2018
    Publication date: May 24, 2018
    Inventors: Danny W. Muse, Ryan Wicker, Eric MacDonald, Rodolfo Salas, Francisco Medina
  • Publication number: 20180078641
    Abstract: The present invention relates to the treatment of infectious diseases, specifically by extracorporeally eradicating the pathogen. This invention comprises methods for the extracorporeal treatment of infectious diseases that will remove infectious pathogens (leukemia cells, bacteria, viruses, or fungi causing a septicemia, metastatic cancer cells, target protein, viruses, parasites, fungi and prions) in humans by targeting such pathogens with a laser or other high-energy source of emissive radiation. More specifically, the method involves removing a bodily fluid from a patient, attaching an antibody to pathogens in the bodily fluid, sensing the antibody-pathogen moiety, using a high-powered, focused laser, or other suitable light source, to destroy the antibody-pathogen moiety, removing the remains of the antibody-pathogen by filtering or other suitable mechanism(s), and returning the bodily fluid to the patient.
    Type: Application
    Filed: November 14, 2017
    Publication date: March 22, 2018
    Inventors: Mitchell S. Felder, Danny W. Muse
  • Patent number: 9908037
    Abstract: An electronic gaming die includes an enclosure, a flexible substrate, a number of light emitting diodes, a sensor, a processor and a battery. The enclosure has N sides where N is equal to or greater than 4. The flexible substrate folds into N sides and fits into an interior of the enclosure, wherein each side has an inner face, an outer face and is assigned an integer from 1 to N. The light emitting diodes are disposed on the outer face of each side of the flexible substrate, wherein the number of light emitting diodes equals the integer assigned to the side of the flexible substrate. The sensor, processor and battery are disposed on one of the inner faces of the flexible substrate.
    Type: Grant
    Filed: July 10, 2014
    Date of Patent: March 6, 2018
    Inventors: Danny W. Muse, Ryan Wicker, Eric MacDonald, Rodolfo Salas, Francisco Medina
  • Publication number: 20170049889
    Abstract: The present invention relates to the treatment of infectious diseases, specifically by extracorporeally eradicating the pathogen. This invention comprises methods for the extracorporeal treatment of infectious diseases that will remove infectious pathogens (leukemia cells, bacteria, viruses, or fungi causing a septicemia, metastatic cancer cells, target protein, viruses, parasites, fungi and prions) in humans by targeting such pathogens with a laser or other high-energy source of emissive radiation. More specifically, the method involves removing a bodily fluid from a patient, attaching an antibody to pathogens in the bodily fluid, sensing the antibody-pathogen moiety, using a high-powered, focused laser, or other suitable light source, to destroy the antibody-pathogen moiety, removing the remains of the antibody-pathogen by filtering or other suitable mechanism(s), and returning the bodily fluid to the patient.
    Type: Application
    Filed: April 14, 2015
    Publication date: February 23, 2017
    Applicant: Marv Enterprises, LLC
    Inventors: Mitchell S. Felder, Danny W. Muse
  • Publication number: 20160324009
    Abstract: Systems and methods for creating interlayer mechanical or electrical attachments or connections using filaments within a three-dimensional structure, structural component, or structural electronic, electromagnetic, or electromechanical component/device.
    Type: Application
    Filed: June 17, 2016
    Publication date: November 3, 2016
    Inventors: Ryan B. Wicker, Franciso Medina, Eric MacDonald, Danny W. Muse
  • Patent number: 9414501
    Abstract: The present invention provides systems and methods for creating interlayer mechanical or electrical attachments or connections using filaments within a three-dimensional structure, structural component, or structural electronic, electromagnetic or electromechanical component/device.
    Type: Grant
    Filed: March 14, 2013
    Date of Patent: August 9, 2016
    Assignee: Board of Regents, The University of Texas System
    Inventors: Ryan B. Wicker, Francisco Medina, Eric MacDonald, Danny W. Muse, David Espalin
  • Publication number: 20150014923
    Abstract: An electronic gaming die includes an enclosure, a flexible substrate, a number of light emitting diodes, a sensor, a processor and a battery. The enclosure has N sides where N is equal to or greater than 4. The flexible substrate folds into N sides and fits into an interior of the enclosure, wherein each side has an inner face, an outer face and is assigned an integer from 1 to N. The light emitting diodes are disposed on the outer face of each side of the flexible substrate, wherein the number of light emitting diodes equals the integer assigned to the side of the flexible substrate. The sensor, processor and battery are disposed on one of the inner faces of the flexible substrate.
    Type: Application
    Filed: July 10, 2014
    Publication date: January 15, 2015
    Inventors: Danny W. Muse, Ryan Wicker, Eric MacDonald, Rodolfo Salas, Francisco Medina
  • Publication number: 20140268604
    Abstract: The present invention provides systems and methods for embedding a filament or filament mesh in a three-dimensional structure, structural component, or structural electronic, electromagnetic or electromechanical component/device by providing at least a first layer of a substrate material, and embedding at least a portion of a filament or filament mesh within the first layer of the substrate material such the portion of the filament or filament mesh is substantially flush with a top surface of the first layer and a substrate material in a flowable state is displaced by the portion of the filament and does not substantially protrude above the top surface of the first layer, allowing the continuation of an additive manufacturing process above the embedded filament or filament mesh.
    Type: Application
    Filed: March 14, 2013
    Publication date: September 18, 2014
    Applicant: BOARD OF REGENTS, THE UNIVERSITY OF TEXAS SYSTEM
    Inventors: Ryan B. Wicker, Francisco Medina, Eric MacDonald, Danny W. Muse, David Espalin
  • Publication number: 20130170171
    Abstract: The present invention provides a system and method for making a three-dimensional electronic, electromagnetic or electromechanical component/device by: (1) creating one or more layers of a three-dimensional substrate by depositing a substrate material in a layer-by-layer fashion, wherein the substrate includes a plurality of interconnection cavities and component cavities; (2) filling the interconnection cavities with a conductive material; and (3) placing one or more components in the component cavities.
    Type: Application
    Filed: January 4, 2012
    Publication date: July 4, 2013
    Applicant: BOARD OF REGENTS, THE UNIVERSITY OF TEXAS SYSTEM
    Inventors: Ryan B. Wicker, Eric MacDonald, Francisco Medina, David Espalin, Danny W. Muse