Patents by Inventor Daoyi Wang

Daoyi Wang has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20180176666
    Abstract: A remote node includes a first node input, a second node input, and an optical switch. The optical switch includes a first switch input optically coupled to the first node input, a second switch input optically coupled to the second node input, a first switch output switchably coupled to the first switch input or the second switch input, and a second switch output switchably coupled to the first switch input or the second switch input. The remote node includes a photodiode optically coupled to the second switch output, and a capacitor electrically coupled to the photodiode and the optical switch. When the first switch input is switchably coupled to the first switch output, the second switch input is switchably coupled to the second switch output. Light received by the second switch input passes out the second switch output to the photodiode. The photodiode charges the capacitor to a threshold charge.
    Type: Application
    Filed: December 20, 2016
    Publication date: June 21, 2018
    Applicant: Google Inc.
    Inventors: Liang Du, Yut Loy Chan, Xiangjun Zhao, Changhong Joy Jiang, Cedric Fung Lam, Daoyi Wang, Tao Zhang
  • Publication number: 20180175935
    Abstract: A carrier office includes an optical line terminal, a first transmit-erbium-doped fiber amplifier (EDFA), and a second transmit-EDFA. The OLT is configured to transmit first and second optical signals. The first transmit-EDFA is optically coupled to the OLT and a first feeder fiber, and the first feeder fiber is optically coupled to a first remote node (RN). The first transmit-EDFA is operable between a respective enabled state and a respective disabled state. The second transmit-EDFA is optically coupled to the OLT and a second feeder fiber, and the second feeder fiber is optically coupled to a second RN. The second transmit-EDFA is operable between a respective enabled state and a respective disabled state.
    Type: Application
    Filed: December 20, 2016
    Publication date: June 21, 2018
    Applicant: Google, Inc.
    Inventors: Liang Du, Yut Loy Chan, Xiangjun Zhao, Changhong Joy Jiang, Cedric Fund Lam, Daoyi Wang, Tao Zhang
  • Patent number: 9948422
    Abstract: A communication system includes a first optical system and a second optical system optically connected to a clamping laser and a pump laser. The first optical system includes first and second optical splitters. The first optical splitter is configured to receive a clamping laser signal from the clamping laser and split the signal into split clamping laser signals. The second optical splitter is configured to receive a pump laser signal from the pump laser and split signal into split pump laser signals. The second optical system is optically connected to the first optical system and includes amplifier systems. Each amplifier system is configured to receive a multiplexed signal. The second optical system includes first and second combiners optically connected to an erbium-doped fiber. The first combiner is optically connected to the first splitter, and the second combiner is optically connected to the second splitter.
    Type: Grant
    Filed: February 9, 2017
    Date of Patent: April 17, 2018
    Assignee: Google LLC
    Inventors: Xiangjun Zhao, Chiachi Wang, Daoyi Wang, Cedric Fung Lam, Liang Du, Changhong Joy Jiang
  • Publication number: 20170332159
    Abstract: The communication system has first and second optical systems and an optical feed fiber in communication with the first optical system and arranged to convey a feeder optical signal to the second optical system. The first optical system includes a multiplexer configured to multiplex/demultiplex between a first optical line terminal signal, a second optical line terminal signal, and the feeder optical signal. The feeder optical signal includes the first optical line terminal signal and the second optical line terminal signal. The first optical line terminal signal includes a first upstream free spectral range and a first downstream free spectral range. The second optical line terminal signal includes a second upstream free spectral range and a second downstream free spectral range. The second optical system is in communication with the optical feed fiber and is configured to multiplex and demultiplex between the feeder optical signal and optical network unit signals.
    Type: Application
    Filed: June 29, 2017
    Publication date: November 16, 2017
    Applicant: Google Inc.
    Inventors: Liang Du, Xiangjun Zhao, Cedric Fung Lam, Daoyi Wang, Changhong Joy Jiang
  • Publication number: 20170317778
    Abstract: A communication system includes a first multiplexer configured to multiplex a first optical line terminal signal having a first multiplexing group and a second optical line terminal signal having a second multiplexing group into a first multiplexed signal. The communication system includes a second multiplexer configured to demultiplex a second multiplexed signal into a third optical line terminal signal having the first multiplexing group and a fourth optical line terminal signal having the second multiplexing group. Moreover, the communication system includes a third multiplexer optically connected with the first multiplexer and the second multiplexer, the third multiplexer configured to multiplex/demultiplex between a feeder optical signal and the first and second multiplexed signals. The first and second optical line terminal signals include a legacy upstream free spectral range, and the third and fourth optical line terminal signals include a legacy downstream free spectral range.
    Type: Application
    Filed: July 20, 2017
    Publication date: November 2, 2017
    Applicant: Google Inc.
    Inventors: Cedric Fung Lam, Liang Du, Changhong Joy Jiang, Ben Warren Segura, Xiangjun Zhao, Daoyi Wang
  • Patent number: 9749080
    Abstract: A communication system includes a first multiplexer configured to multiplex a first optical line terminal signal having a first multiplexing group and a second optical line terminal signal having a second multiplexing group into a first multiplexed signal. The communication system includes a second multiplexer configured to demultiplex a second multiplexed signal into a third optical line terminal signal having the first multiplexing group and a fourth optical line terminal signal having the second multiplexing group. Moreover, the communication system includes a third multiplexer optically connected with the first multiplexer and the second multiplexer, the third multiplexer configured to multiplex/demultiplex between a feeder optical signal and the first and second multiplexed signals. The first and second optical line terminal signals include a legacy upstream free spectral range, and the third and fourth optical line terminal signals include a legacy downstream free spectral range.
    Type: Grant
    Filed: November 11, 2015
    Date of Patent: August 29, 2017
    Assignee: Google Inc.
    Inventors: Cedric Fung Lam, Liang Du, Changhong Joy Jiang, Ben Warren Segura, Xiangjun Zhao, Daoyi Wang
  • Patent number: 9729950
    Abstract: The communication system has first and second optical systems and an optical feed fiber in communication with the first optical system and arranged to convey a feeder optical signal to the second optical system. The first optical system includes a multiplexer configured to multiplex/demultiplex between a first optical line terminal signal, a second optical line terminal signal, and the feeder optical signal. The feeder optical signal includes the first optical line terminal signal and the second optical line terminal signal. The first optical line terminal signal includes a first upstream free spectral range and a first downstream free spectral range. The second optical line terminal signal includes a second upstream free spectral range and a second downstream free spectral range. The second optical system is in communication with the optical feed fiber and is configured to multiplex and demultiplex between the feeder optical signal and optical network unit signals.
    Type: Grant
    Filed: November 25, 2015
    Date of Patent: August 8, 2017
    Assignee: Google Inc.
    Inventors: Liang Du, Xiangjun Zhao, Cedric Fung Lam, Daoyi Wang, Changhong Joy Jiang
  • Publication number: 20170155461
    Abstract: A communication system includes a first optical system and a second optical system optically connected to a clamping laser and a pump laser. The first optical system includes first and second optical splitters. The first optical splitter is configured to receive a clamping laser signal from the clamping laser and split the signal into split clamping laser signals. The second optical splitter is configured to receive a pump laser signal from the pump laser and split signal into split pump laser signals. The second optical system is optically connected to the first optical system and includes amplifier systems. Each amplifier system is configured to receive a multiplexed signal. The second optical system includes first and second combiners optically connected to an erbium-doped fiber. The first combiner is optically connected to the first splitter, and the second combiner is optically connected to the second splitter.
    Type: Application
    Filed: February 9, 2017
    Publication date: June 1, 2017
    Applicant: Google Inc.
    Inventors: Xiangjun Zhao, Chiachi Wang, Daoyi Wang, Cedric Fung Lam, Liang Du, Changhong Joy Jiang
  • Publication number: 20170150243
    Abstract: The communication system has first and second optical systems and an optical feed fiber in communication with the first optical system and arranged to convey a feeder optical signal to the second optical system. The first optical system includes a multiplexer configured to multiplex/demultiplex between a first optical line terminal signal, a second optical line terminal signal, and the feeder optical signal. The feeder optical signal includes the first optical line terminal signal and the second optical line terminal signal. The first optical line terminal signal includes a first upstream free spectral range and a first downstream free spectral range. The second optical line terminal signal includes a second upstream free spectral range and a second downstream free spectral range. The second optical system is in communication with the optical feed fiber and is configured to multiplex and demultiplex between the feeder optical signal and optical network unit signals.
    Type: Application
    Filed: November 25, 2015
    Publication date: May 25, 2017
    Applicant: Google Inc.
    Inventors: Liang Du, Xiangjun Zhao, Cedric Fung Lam, Daoyi Wang, Changhong Joy Jiang
  • Publication number: 20170134113
    Abstract: A communication system includes a first multiplexer configured to multiplex a first optical line terminal signal having a first multiplexing group and a second optical line terminal signal having a second multiplexing group into a first multiplexed signal. The communication system includes a second multiplexer configured to demultiplex a second multiplexed signal into a third optical line terminal signal having the first multiplexing group and a fourth optical line terminal signal having the second multiplexing group. Moreover, the communication system includes a third multiplexer optically connected with the first multiplexer and the second multiplexer, the third multiplexer configured to multiplex/demultiplex between a feeder optical signal and the first and second multiplexed signals. The first and second optical line terminal signals include a legacy upstream free spectral range, and the third and fourth optical line terminal signals include a legacy downstream free spectral range.
    Type: Application
    Filed: November 11, 2015
    Publication date: May 11, 2017
    Applicant: Google Inc.
    Inventors: Cedric Fung Lam, Liang Du, Changhong Joy Jiang, Ben Warren Segura, Xiangjun Zhao, Daoyi Wang
  • Patent number: 9608758
    Abstract: A communication system includes a first optical system and a second optical system optically connected to a clamping laser and a pump laser. The first optical system includes first and second optical splitters. The first optical splitter is configured to receive a clamping laser signal from the clamping laser and split the signal into split clamping laser signals. The second optical splitter is configured to receive a pump laser signal from the pump laser and split signal into split pump laser signals. The second optical system is optically connected to the first optical system and includes amplifier systems. Each amplifier system is configured to receive a multiplexed signal. The second optical system includes first and second combiners optically connected to an erbium-doped fiber. The first combiner is optically connected to the first splitter, and the second combiner is optically connected to the second splitter.
    Type: Grant
    Filed: November 30, 2015
    Date of Patent: March 28, 2017
    Assignee: Google Inc.
    Inventors: Xiangjun Zhao, Chiachi Wang, Daoyi Wang, Cedric Fung Lam, Liang Du, Changhong Joy Jiang
  • Patent number: 8873909
    Abstract: Micro-optic filtering devices and the method of making the same are described. In one aspect, the invention is related to techniques of obtaining low-loss coupling optics, packaging structure and process to secure components constituting a micro-optic fiber device. To support and fix various components in a fiber optic device, tubes are used to facilitate the manufacturability of these optical devices. These tubes may be metal tubes or glass tubes.
    Type: Grant
    Filed: April 23, 2012
    Date of Patent: October 28, 2014
    Assignee: Alliance Fiber Optic Products, Inc.
    Inventors: Daoyi Wang, Shiping Zhang, Yao Li
  • Patent number: 8538229
    Abstract: Various designs of pluggable variable optical attenuator (VOA) are disclosed. A pluggable VOA has an optical fiber adaptor connected to an internal VOA via different fiber optical interface configurations. At least a pair of ports is provided to accept optical fibers or external optical fiber ferrules for optical pluggability. The VOA is controlled electronically or manually. To facilitate a control of the VOA via a hosting system, an electronic device and/or interface is provided. External commands take the control of the VOA and set an attenuation level within a specification when the pluggable variable optical attenuator device is connected to a hosting system.
    Type: Grant
    Filed: November 23, 2009
    Date of Patent: September 17, 2013
    Assignee: Alliance Fiber Optic Products, Inc.
    Inventors: Xinzhong Wang, Daoyi Wang, Yao Li
  • Patent number: 8538210
    Abstract: Techniques for designing optical devices that can be manufactured in volume are disclosed. In an exemplary an optical assembly, to ensure that all collimators are on one side to facilitate efficient packaging, all collimators are positioned on both sides of a substrate. Thus one or more beam folding components are used to fold a light beam up and down through the collimators on top of the substrate and bottom of the substrate.
    Type: Grant
    Filed: June 29, 2009
    Date of Patent: September 17, 2013
    Assignee: Alliance Fiber Optic Products, Inc.
    Inventors: Daoyi Wang, Frank Wu
  • Patent number: 8351791
    Abstract: New designs of optical devices, particularly for adding or dropping a selected wavelength or a group of wavelengths as well as multiplexing a plurality of signals into a multiplexed signal or demultiplexing a multiplexed signal into several signals are disclosed. According to one aspect of the present invention, an isolator core is built into the optical devices to stop a reflected signal from an optical file in the optical devices. As a result, the optical devices are amenable to small footprint, broad operating wavelength range, enhanced impact performance, lower cost, and easier manufacturing process.
    Type: Grant
    Filed: August 17, 2010
    Date of Patent: January 8, 2013
    Assignee: Alliance Fiber Optic Products, Inc.
    Inventors: Daoyi Wang, Yao Li, Andy Zhou
  • Publication number: 20120237222
    Abstract: Techniques for designing optical devices that can be manufactured in volume are disclosed. In an exemplary an optical assembly, to ensure that all collimators are on one side to facilitate efficient packaging, all collimators are positioned on both sides of a substrate. Thus one or more beam folding components are used to fold a light beam up and down through the collimators on top of the substrate and bottom of the substrate.
    Type: Application
    Filed: June 29, 2009
    Publication date: September 20, 2012
    Applicant: Alliance Fiber Optic Products, Inc.
    Inventors: Daoyi Wang, Frank Wu
  • Patent number: 7912374
    Abstract: Techniques for designing optical devices with high reflection isolation are disclosed. According to one aspect of the devices, an optical filter and a reflecting element are used. Depending on implementation, the reflecting element may be another optical filter, a prism and a mirror. The reflecting element is provided to direct a reflected light beam from the optical filter back to the optical filter for additional filtering, wherein the reflected light is a filtered signal that is presumably carrying residuals of unwanted signals (e.g., a transmitted signal of the optical filter). With a proper placement of the reflecting element with respect to the optical filter, the reflected light beam can be redirected back to the optical filter for a predefined number of times so that the errors or residuals in the reflected light beam are much reduced, if not completely removed.
    Type: Grant
    Filed: September 30, 2004
    Date of Patent: March 22, 2011
    Assignee: Alliance Fiber Optic Products, Inc.
    Inventors: Daoyi Wang, Yao Li
  • Publication number: 20100329678
    Abstract: Techniques for designing optical devices that can be manufactured in volume are disclosed. In an exemplary an optical assembly, to ensure that all collimators are on one side to facilitate efficient packaging, all collimators are positioned on both sides of a substrate. Thus one or more beam folding components are used to fold a light beam up and down through the collimators on top of the substrate and bottom of the substrate.
    Type: Application
    Filed: June 29, 2009
    Publication date: December 30, 2010
    Applicant: Alliance Fiber Optic Products, Inc.
    Inventors: Daoyi Wang, Frank Wu
  • Patent number: 7843644
    Abstract: Techniques for designing compact free-space optical device with all input/output ports on one side are disclosed. Instead of folding a fiber, a beam folding means is provided to turn a light beam to significantly reduce the size of the device. In one embodiment, there are a first collimator, a second collimator, and a beam folding means to turn a light beam from the first collimator back to the second collimator by two turns so that a first light path from the first collimator to the beam folding means and a second light path from the second collimator to the beam folding means are parallel. A substrate is provided to which the first and second collimators and filters are boned thereto.
    Type: Grant
    Filed: February 1, 2007
    Date of Patent: November 30, 2010
    Assignee: Alliance Fiber Optic Products, Inc.
    Inventors: Daoyi Wang, Yao Li
  • Patent number: 7672554
    Abstract: New designs of optical devices, particularly for multiplexing or demultiplexing as well as adding or dropping are disclosed. According to one aspect of the designs, one or more beam redirecting parts (e.g., prisms or mirrors) are used in an optical device to redirect a beam for at least two purposes: to increase a distance between two optical parts that are not positioned along an optical path, by using one or two of such beam redirecting parts, and to minimize an angle of incidence (AOI) to an optical filter or to adjust the AOI to an optimum value. As a result, devices employing the techniques provide small AOL and flexibility in adjustment and are amenable to small footprint, broad operating wavelength range, enhanced impact performance, lower cost, and easier manufacturing process.
    Type: Grant
    Filed: May 15, 2004
    Date of Patent: March 2, 2010
    Assignee: Alliance Fiber Optic Products, Inc.
    Inventors: Daoyi Wang, Yao Li