Patents by Inventor Dapeng Wang

Dapeng Wang has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20090287446
    Abstract: The present invention generally includes an apparatus and method of forming a reference module device that is able to deliver a repeatable and desirable amount of power that does not degrade or change over time. The reference module can be used to help test and calibrate various testing equipment used in the production of a photovoltaic device that may be formed in a solar cell fab. The solar cell fab is generally an arrangement of processing modules and automation equipment that is used to form solar cell devices.
    Type: Application
    Filed: April 22, 2009
    Publication date: November 19, 2009
    Applicant: APPLIED MATERIALS, INC.
    Inventors: Dapeng Wang, Michel R. Frei, Tzay-Fa Su, David Tanner
  • Publication number: 20090256581
    Abstract: Embodiments of the present invention generally relate to a module that can test and analyze various regions of a solar cell device in an automated or manual fashion after one or more steps have been completed in the solar cell formation process. The module used to perform the automated testing and analysis processes can also be adapted to test a partially formed solar cell at various stages of the solar cell formation process within an automated solar cell production line. The automated solar cell production line is generally an arrangement of automated processing modules and automation equipment that is used to form solar cell devices.
    Type: Application
    Filed: March 24, 2009
    Publication date: October 15, 2009
    Applicant: APPLIED MATERIALS, INC.
    Inventors: Danny Cam Toan Lu, Michael Marriott, Vicky Svidenko, Dapeng Wang, Michel R. Frei
  • Patent number: 7568970
    Abstract: The present invention provides a deformable pad useful for chemical mechanical polishing (“CMP”), a CMP apparatus incorporating the deformable pad of the present invention, and methods for using the deformable pad and CMP apparatus of the present invention. The deformable pad of the present invention includes a plurality of solid supports which substantially eliminate the nonuniform polishing rates in known CMP processes and may be tailored to optimize a wide array of CMP processes. The CMP apparatus of the present invention incorporates a deformable pad of the present invention and may include several other known features, such as a polishing pad, a substrate carrier, mechanical assemblies for agitating the polishing pad or substrate carrier, etc.
    Type: Grant
    Filed: June 5, 2006
    Date of Patent: August 4, 2009
    Assignee: Micron Technology, Inc.
    Inventor: Dapeng Wang
  • Patent number: 7542373
    Abstract: An apparatus and a method for migration of three components, 3-Dimensions seismic (3-C, 3-D) data acquired by down-hole receivers and surface seismic sources. This method utilizes full 3 components reflection wave field. It uses a dynamic, vector energy mapping method to image a reflection position and maps each time sample only to its reflected image point. Therefore, this method reduces unwanted data smearing and false mirror images. This method overcomes the weakness of using only a single component trace or pre-rotated three-component traces in the 1-C or 3-C 3-D VSP migration and produces better 3-D image.
    Type: Grant
    Filed: October 25, 2004
    Date of Patent: June 2, 2009
    Assignee: Baker Hughes Incorporated
    Inventor: Dapeng Wang
  • Publication number: 20090104342
    Abstract: The formation of diagnostic devices on the same substrate used to fabricate a photovoltaic (PV) cell is described. Such devices, also referred to as process diagnostic vehicles (PDVs), are configured for in-line monitoring of electrical characteristics of PV cell features and are formed on the substrate using the same process steps for PV cell fabrication. The data collected via the PDVs can be used to tune or optimize subsequent PV cell fabrication, i.e., used as feedback for the fabrication process. Alternatively, the data collected via PDVs can be fed forward in the fabrication process, so that later process steps performed on a PV cell substrate can be modified to compensate for issues detected on the PV cell substrate via the PDVs.
    Type: Application
    Filed: September 17, 2008
    Publication date: April 23, 2009
    Inventors: Dapeng Wang, Michel R. Frei, Tzay-Fa (Jeff) Su, Vicky Svidenko, Gregg S. Higashi
  • Patent number: 7407885
    Abstract: A method of forming an electrically conductive plug includes providing an opening within electrically insulative material over a node location on a substrate. An electrically conductive material is formed within the opening and elevationally over the insulative material. Some of the conductive material is removed effective to recess an outermost surface of the conductive material to from about 100 Angstroms to about 200 Angstroms from an outermost surface of the insulative material after said removing of some of the conductive material. After removing some of the conductive material, remaining volume of the opening over the conductive material is overfilled with an electrically conductive metal material different from that of the conductive material. The metal material is polished effective to form an electrically conductive plug within the opening comprising the conductive material and the metal material. Other aspects and implementations are contemplated.
    Type: Grant
    Filed: May 11, 2005
    Date of Patent: August 5, 2008
    Assignee: Micron Technology, Inc.
    Inventors: Zhaoli Sun, Jun Liu, Dapeng Wang
  • Patent number: 7368389
    Abstract: A method of forming an electrically conductive plug includes providing an opening within electrically insulative material over a node location on a substrate. An electrically conductive material is formed within the opening and elevationally over the insulative material. Some of the conductive material is removed effective to recess an outermost surface of the conductive material to from about 100 Angstroms to about 200 Angstroms from an outermost surface of the insulative material after said removing of some of the conductive material. After removing some of the conductive material, remaining volume of the opening over the conductive material is overfilled with an electrically conductive metal material different from that of the conductive material. The metal material is polished effective to form an electrically conductive plug within the opening comprising the conductive material and the metal material. Other aspects and implementations are contemplated.
    Type: Grant
    Filed: March 26, 2007
    Date of Patent: May 6, 2008
    Assignee: Micron Technology, Inc.
    Inventors: Zhaoli Sun, Jun Liu, Dapeng Wang
  • Publication number: 20070178695
    Abstract: A method of forming an electrically conductive plug includes providing an opening within electrically insulative material over a node location on a substrate. An electrically conductive material is formed within the opening and elevationally over the insulative material. Some of the conductive material is removed effective to recess an outermost surface of the conductive material to from about 100 Angstroms to about 200 Angstroms from an outermost surface of the insulative material after said removing of some of the conductive material. After removing some of the conductive material, remaining volume of the opening over the conductive material is overfilled with an electrically conductive metal material different from that of the conductive material. The metal material is polished effective to form an electrically conductive plug within the opening comprising the conductive material and the metal material. Other aspects and implementations are contemplated.
    Type: Application
    Filed: March 26, 2007
    Publication date: August 2, 2007
    Inventors: Zhaoli Sun, Jun Liu, Dapeng Wang
  • Publication number: 20070173060
    Abstract: A method of forming an electrically conductive plug includes providing an opening within electrically insulative material over a node location on a substrate. An electrically conductive material is formed within the opening and elevationally over the insulative material. Some of the conductive material is removed effective to recess an outermost surface of the conductive material to from about 100 Angstroms to about 200 Angstroms from an outermost surface of the insulative material after said removing of some of the conductive material. After removing some of the conductive material, remaining volume of the opening over the conductive material is overfilled with an electrically conductive metal material different from that of the conductive material. The metal material is polished effective to form an electrically conductive plug within the opening comprising the conductive material and the metal material. Other aspects and implementations are contemplated.
    Type: Application
    Filed: March 26, 2007
    Publication date: July 26, 2007
    Inventors: Zhaoli Sun, Jun Liu, Dapeng Wang
  • Patent number: 7186168
    Abstract: The present invention provides a deformable pad useful for chemical mechanical polishing (“CMP”), a CMP apparatus incorporating the deformable pad of the present invention, and methods for using the deformable pad and CMP apparatus of the present invention. The deformable pad of the present invention includes a plurality of solid supports which substantially eliminate the nonuniform polishing rates in known CMP processes and may be tailored to optimize a wide array of CMP processes. The CMP apparatus of the present invention incorporates a deformable pad of the present invention and may include several other known features, such as a polishing pad, a substrate carrier, mechanical assemblies for agitating the polishing pad or substrate carrier, etc.
    Type: Grant
    Filed: December 5, 2003
    Date of Patent: March 6, 2007
    Assignee: Micron Technology, Inc.
    Inventor: Dapeng Wang
  • Publication number: 20060258155
    Abstract: A method of forming an electrically conductive plug includes providing an opening within electrically insulative material over a node location on a substrate. An electrically conductive material is formed within the opening and elevationally over the insulative material. Some of the conductive material is removed effective to recess an outermost surface of the conductive material to from about 100 Angstroms to about 200 Angstroms from an outermost surface of the insulative material after said removing of some of the conductive material. After removing some of the conductive material, remaining volume of the opening over the conductive material is overfilled with an electrically conductive metal material different from that of the conductive material. The metal material is polished effective to form an electrically conductive plug within the opening comprising the conductive material and the metal material. Other aspects and implementations are contemplated.
    Type: Application
    Filed: May 11, 2005
    Publication date: November 16, 2006
    Inventors: Zhaoli Sun, Jun Liu, Dapeng Wang
  • Publication number: 20060229008
    Abstract: The present invention provides a deformable pad useful for chemical mechanical polishing (“CMP”), a CMP apparatus incorporating the deformable pad of the present invention, and methods for using the deformable pad and CMP apparatus of the present invention. The deformable pad of the present invention includes a plurality of solid supports which substantially eliminate the nonuniform polishing rates in known CMP processes and may be tailored to optimize a wide array of CMP processes. The CMP apparatus of the present invention incorporates a deformable pad of the present invention and may include several other known features, such as a polishing pad, a substrate carrier, mechanical assemblies for agitating the polishing pad or substrate carrier, etc.
    Type: Application
    Filed: June 5, 2006
    Publication date: October 12, 2006
    Inventor: Dapeng Wang
  • Publication number: 20050135189
    Abstract: An apparatus and a method for migration of three components, 3-Dimensions seismic (3-C, 3-D) data acquired by down-hole receivers and surface seismic sources. This method utilizes full 3 components reflection wave field. It uses a dynamic, vector energy mapping method to image a reflection position and maps each time sample only to its reflected image point. Therefore, this method reduces unwanted data smearing and false mirror images. This method overcomes the weakness of using only a single component trace or pre-rotated three-component traces in the 1-C or 3-C 3-D VSP migration and produces better 3-D image.
    Type: Application
    Filed: October 25, 2004
    Publication date: June 23, 2005
    Inventor: Dapeng Wang
  • Publication number: 20040121709
    Abstract: The present invention provides a deformable pad useful for chemical mechanical polishing (“CMP”), a CMP apparatus incorporating the deformable pad of the present invention, and methods for using the deformable pad and CMP apparatus of the present invention. The deformable pad of the present invention includes a plurality of solid supports which substantially eliminate the nonuniform polishing rates in known CMP processes and may be tailored to optimize a wide array of CMP processes. The CMP apparatus of the present invention incorporates a deformable pad of the present invention and may include several other known features, such as a polishing pad, a substrate carrier, mechanical assemblies for agitating the polishing pad or substrate carrier, etc.
    Type: Application
    Filed: December 5, 2003
    Publication date: June 24, 2004
    Inventor: Dapeng Wang
  • Patent number: 6666751
    Abstract: The present invention provides a deformable pad useful for chemical mechanical polishing (“CMP”), a CMP apparatus incorporating the deformable pad of the present invention, and methods for using the deformable pad and CMP apparatus of the present invention. The deformable pad of the present invention includes a plurality of solid supports which substantially eliminate the nonuniform polishing rates in known CMP processes and may be tailored to optimize a wide array of CMP processes. The CMP apparatus of the present invention incorporates a deformable pad of the present invention and may include several other known features, such as a polishing pad, a substrate carrier, mechanical assemblies for agitating the polishing pad or substrate carrier, etc.
    Type: Grant
    Filed: July 17, 2000
    Date of Patent: December 23, 2003
    Assignee: Micron Technology, Inc.
    Inventor: Dapeng Wang
  • Patent number: 6498101
    Abstract: Planarizing pads and methods for making or using planarizing pads to polish or planarize semiconductor wafers, field emission displays, or other microelectronic substrates and substrate assemblies. In one embodiment, the planarizing pad comprises a compressible body and a plurality of discrete contact elements. The compressible body can comprise a base having a backside facing a support surface of a table and a front side facing away from the support surface. The contact elements can comprise raised sections of a single layer or separate plates. The contact elements have a bottom surface attached to the front side of the base and a top surface configured to contact a microelectronic substrate facing away from the base. The compressible body has a first hardness and the contact elements have a second hardness greater than the first hardness, and/or the body has a first compressibility and the contact elements have a second compressibility less than the first compressibility.
    Type: Grant
    Filed: February 28, 2000
    Date of Patent: December 24, 2002
    Assignee: Micron Technology, Inc.
    Inventor: Dapeng Wang
  • Patent number: 6190929
    Abstract: In one aspect, the invention encompasses a method of forming a semiconductor device. A masking material is formed over a semiconductor substrate. A mold is provided, and the mold has a first pattern defined by projections and valleys between the projection. The masking material is pressed between the mold and the substrate to form a second pattern in the masking material. The second pattern is substantially complementary to the first pattern. The mold is removed from the masking material, and subsequently the masking material is utilized as a mask during etching of the semiconductor substrate. In another aspect, the invention encompasses a method of forming a field emission display. A first material layer is formed over a conductive substrate, and a masking material is formed over the first material layer. A mold is provided over the mask material, and the mask material is pressed between the mold and the first material layer to pattern the masking material.
    Type: Grant
    Filed: July 23, 1999
    Date of Patent: February 20, 2001
    Assignee: Micron Technology, Inc.
    Inventors: Dapeng Wang, James Hofmann