Patents by Inventor Daqing Fang

Daqing Fang has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240060159
    Abstract: The present disclosure discloses a Mg—Al based magnesium alloy, and a preparation method of a tube and an application of the same, and belongs to the technical field of alloy materials. The magnesium alloy includes, by weight percentage, 7.0-8.6% Al, 0.8-2.0% RE, 0.2-0.8% Mn, and a balance of Mg, and the magnesium alloy has an elongation of 15-22%. The preparation method of a tube of the Mg—Al based magnesium alloy includes: mixing and smelting an Al source, a RE source, a Mn source, and a Mg source to give a liquid mixed metal; casting the liquid mixed metal into a bar through semi-continuous casting; performing homogenization heat treatment on the bar at 360-400° C. for 6-10 h; and performing extrusion-forming on the heat-treated bar to obtain a magnesium alloy tube. The Mg—Al based magnesium alloy of the present disclosure has high elongation, and the elongation of the tube formed using the same can reach 15-22%, so that it can withstand large plastic deformation.
    Type: Application
    Filed: January 13, 2022
    Publication date: February 22, 2024
    Inventors: Daqing FANG, Xiaoru ZHANG, Xiangdong DING, Jun YANG, Peng LIU, Baoluo GONG
  • Patent number: 7744814
    Abstract: Methods for producing a magnesium-rare earth intermediate alloy, which belongs to the technical field of molten salt electrolytic metallurgical technology. In one embodiment, the method comprises subjecting magnesium chloride, lanthanum praseodymium cerium chloride and potassium chloride to an electrolysis, and adding additional lanthanum praseodymium cerium chloride and magnesium chloride during the electrolysis. In the electrolysis process, neither metal magnesium nor rare earth metal is used, only the chlorides of rare earths and magnesium are used and the rare earth ions and the magnesium ions are co-electrodeposited on the cathode, so as to obtain the intermediate alloy having a melting point close to the eutectic temperature of the rare earth and magnesium. The method has various advantages including but not limited to high operability, simple process and equipment, stable quality of product by mass production and easy for commercial scale production.
    Type: Grant
    Filed: December 23, 2008
    Date of Patent: June 29, 2010
    Assignee: Changchun Institute of Applied Chemistry Chinese Academy of Sciences
    Inventors: Jian Meng, Daqing Fang, Deping Zhang, Jiacheng Shen, Dingxiang Tang, Hongjie Zhang
  • Patent number: 7708937
    Abstract: A high-strength, high-toughness, weldable and deformable rare earth magnesium alloy comprised of 0.7˜1.7% of Ym, 5.5˜6.4% of Zn, 0.45˜0.8% of Zr, 0.02% or less of the total amount of impurity elements of Si, Fe, Cu and Ni, and the remainder of Mg, based on the total weight of the alloy. During smelting, Y, Ho, Er, Gd and Zr are added in a manner of Mg—Y-rich, Mg—Zr intermediate alloys into a magnesium melt; Zn is added in a manner of pure Zn, and at 690˜720° C., a round bar was cast by a semi-continuous casting or a water cooled mould, then an extrusion molding was performed at 380˜410° C. after cutting. Before the extrusion, the alloy is treated by the solid-solution treatment at 480˜510° C. for 2˜3 hours, however, the alloy can also be extrusion molded directly without the solid-solution treatment.
    Type: Grant
    Filed: April 17, 2008
    Date of Patent: May 4, 2010
    Assignee: Changchun Institute of Applied Chemistry Chinese Academy of Sciences
    Inventors: Jian Meng, Daqing Fang, Deping Zhang, Dingxiang Tang, Huayi Lu, Lianshan Zhao, Wei Sun, Xin Qiu, Hongjie Zhang
  • Publication number: 20090263271
    Abstract: A high-strength, high-toughness, weldable and deformable rare earth magnesium alloy comprised of 0.7˜1.7% of Ym, 5.5˜6.4% of Zn, 0.45˜0.8% of Zr, 0.02% or less of the total amount of impurity elements of Si, Fe, Cu and Ni, and the remainder of Mg, based on the total weight of the alloy. During smelting, Y, Ho, Er, Gd and Zr are added in a manner of Mg—Y-rich, Mg—Zr intermediate alloys into a magnesium melt; Zn is added in a manner of pure Zn, and at 690˜720° C., a round bar was cast by a semi-continuous casting or a water cooled mould, then an extrusion molding was performed at 380˜410° C. after cutting. Before the extrusion, the alloy is treated by the solid-solution treatment at 480˜510° C. for 2˜3 hours, however, the alloy can also be extrusion molded directly without the solid-solution treatment.
    Type: Application
    Filed: April 17, 2008
    Publication date: October 22, 2009
    Applicant: CHANGCHUN INSTITUTE OF APPLIED CHEMISTRY CHINESE ACADEMY OF SCIENCES
    Inventors: Jian Meng, Daqing Fang, Deping Zhang, Dingxiang Tang, Huayi Lu, Lianshan Zhao, Wei Sun, Xin Qiu, Hongjie Zhang
  • Publication number: 20090166216
    Abstract: The invention relates to a method for producing a magnesium-rare earth intermediate alloy, which belongs to the technical field of molten salt electrolytic metallurgical technology. Inside an electrolysis oven, magnesium chloride, lanthanum praseodymium cerium chloride and potassium chloride in a controlled mass ratio of 5:(40-35):(55-60) are formulated as electrolyte composition, and the electrolysis is performed under a temperature of 800-900° C., a cathode current density of 10-30 A/cm2, and a distance between the electrodes of 4 to 8 cm; and the lanthanum praseodymium cerium chloride and the magnesium chloride are added in a mass ratio of 1:1.5-5 during the electrolysis, thus the magnesium-lanthanum praseodymium cerium intermediate alloy is produced.
    Type: Application
    Filed: December 23, 2008
    Publication date: July 2, 2009
    Applicant: CHANGCHUNG INSTITUTE OF APPLIED CHEMISTRY CHINESE ACADEMY OF SCIENCES
    Inventors: Jian MENG, Daqing FANG, Deping ZHANG, Jiacheng SHEN, Dingxiang TANG, Hongjie ZHANG
  • Publication number: 20090116993
    Abstract: This invention relates to an AE series heat resistant compression casting magnesium alloy containing cerium and lanthanum and the composition ingredients and the weight percentage thereof are as follows: Al: 3%˜5%, Ce: 0.4%˜2.6%, La: 0.4%˜2.6%, Mn: 0.2%˜0.6%, and the remainder is magnesium. The raw material of cerium lanthanum mixture of rare earth used is the residual, cheap and overstocked cerium lanthanum mixture of rare earth obtained from common cerium rich mixture of rare earth after the Nd, Rr with high value and good market have been separated. The mechanical performance of this invention at room temperature and high temperature excels that of AE 44 and AZ 91 alloys, and the minimum creep rate of 1.82×10-9 S-1 and the creep percentage elongation in 100 h of 0.17% at the condition of 200° C. and 70 MPa excel these of AE 44 alloy.
    Type: Application
    Filed: June 4, 2008
    Publication date: May 7, 2009
    Applicant: CHANGCHUN INSTITUTE OF APPLIED CHEMISTRY CHINESE ACADEMY OF SCIENCES
    Inventors: Jian Meng, Jinghuai Zhang, Dingxiang Tang, Deping Zhang, Daqing Fang