Patents by Inventor Dara Monajemi

Dara Monajemi has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20210078583
    Abstract: A method and system of controlling a drive-neutral-drive (D-N-D) shift in a multi-speed transmission. The method includes receiving a drive to neutral (D-N) shift request followed by a neutral to drive (N-D) shift request; initiating a drive to neutral (D-N) shift and determining an attained gear; determining a scheduled gear; determining if the scheduled gear is equal to the attained gear; and determining whether an off-going clutch for the drive to neutral (D-N) shift is in a hold state. The method further includes (I) aborting the drive to neutral (D-N) shift when (i) the scheduled gear is not equal to the attained gear and (ii) the off-going clutch for the (D-N) shift is in the hold state, or (II) completing a shift to neutral (N) when the off-going clutch for (D-N) shift is not in the hold state followed by shifting back drive (D).
    Type: Application
    Filed: September 17, 2019
    Publication date: March 18, 2021
    Inventors: John Jancowski-Walsh, Zhuoran Zhang, Dara Monajemi
  • Patent number: 10926769
    Abstract: A method and system of controlling a drive-neutral-drive (D-N-D) shift in a multi-speed transmission. The method includes receiving a drive to neutral (D-N) shift request followed by a neutral to drive (N-D) shift request; initiating a drive to neutral (D-N) shift and determining an attained gear; determining a scheduled gear; determining if the scheduled gear is equal to the attained gear; and determining whether an off-going clutch for the drive to neutral (D-N) shift is in a hold state. The method further includes (I) aborting the drive to neutral (D-N) shift when (i) the scheduled gear is not equal to the attained gear and (ii) the off-going clutch for the (D-N) shift is in the hold state, or (II) completing a shift to neutral (N) when the off-going clutch for (D-N) shift is not in the hold state followed by shifting back drive (D).
    Type: Grant
    Filed: September 17, 2019
    Date of Patent: February 23, 2021
    Assignee: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: John Jancowski-Walsh, Zhuoran Zhang, Dara Monajemi
  • Patent number: 10053099
    Abstract: A transmission is provided having a control module, an input member, an output member, four planetary gear sets, a plurality of interconnecting members, and a plurality of torque transmitting devices. Each of the planetary gear sets includes first, second and third members. The torque transmitting devices include clutches and brakes. The control module includes a control logic sequence for performing a coasting downshift of the transmission.
    Type: Grant
    Filed: May 31, 2016
    Date of Patent: August 21, 2018
    Assignee: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: Dara Monajemi, Matthew D. Whitton, Brian M. Porto
  • Patent number: 9869387
    Abstract: A system includes a torque converter having a turbine, a transmission having friction clutches and an input member connected to the turbine, and a controller. The controller is programmed to control a change-of-mind shift maneuver of the transmission. By executing a method, the controller detects the change-of-mind shift maneuver, predicts an acceleration profile of the turbine for a next-requested shift of the detected shift maneuver as a function of a calibrated desired shift time and an output speed of the transmission, calculates a shift control value for a next-requested shift of the shift maneuver using the predicted acceleration profile, and executes the next-requested shift via the clutches using the calculated shift control value. The shift maneuver may be a skip-at-sync quick shift-to-quick shift or power downshift-to-power downshift. The shift value may be a clutch pressure for an offgoing holding clutch or a torque management level from an engine.
    Type: Grant
    Filed: August 5, 2015
    Date of Patent: January 16, 2018
    Assignee: GM Global Technology Operations LLC
    Inventors: Dara Monajemi, Brian H Fiore, Jeremy V Horgan
  • Publication number: 20170341651
    Abstract: A transmission is provided having a control module, an input member, an output member, four planetary gear sets, a plurality of interconnecting members, and a plurality of torque transmitting devices. Each of the planetary gear sets includes first, second and third members. The torque transmitting devices include clutches and brakes. The control module includes a control logic sequence for performing a coasting downshift of the transmission.
    Type: Application
    Filed: May 31, 2016
    Publication date: November 30, 2017
    Inventors: Dara Monajemi, Matthew D. Whitton, Brian M. Porto
  • Patent number: 9803704
    Abstract: A transmission for a vehicle having a prime mover with an output shaft. The transmission includes an offgoing clutch that is selectively connected to the output shaft, and a controller in communication with the prime mover. The controller includes an offgoing clutch control module that determines an offgoing clutch torque profile at the start of a torque phase in a power downshift that does not exceed a predetermined offgoing clutch energy threshold and a torque request module that limits a rate of input torque into the transmission from the prime mover based upon the determined offgoing clutch torque profile.
    Type: Grant
    Filed: August 30, 2016
    Date of Patent: October 31, 2017
    Assignee: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: Dara Monajemi, Brian M Porto
  • Patent number: 9797506
    Abstract: A method for monitoring a fixed-gear transmission includes deriving a node speed relationship for each of the planetary gear sets based upon a center distance and a gear ratio and determining equivalent speed parameters for nodes of the planetary gear sets based upon a transmission input speed state, an intermediate node speed state and a transmission output speed state. A clutch slip speed relationship is determined for each of the clutches based upon the node speed relationships for the planetary gear sets and the equivalent speed parameters for nodes of the planetary gear sets. Rotational speed sensors monitor the input transmission speed, the intermediate node speed and the transmission output speed. A clutch slip speed for each of the clutches is determined based upon the respective clutch slip speed relationship and the monitored input transmission speed, the monitored intermediate node speed and the monitored transmission output speed.
    Type: Grant
    Filed: September 15, 2014
    Date of Patent: October 24, 2017
    Assignee: GM Global Technology Operations LLC
    Inventors: Brian J. Pellerito, Dara Monajemi, Brian H. Fiore, Joel H. Gunderson
  • Publication number: 20170037957
    Abstract: A system includes a torque converter having a turbine, a transmission having friction clutches and an input member connected to the turbine, and a controller. The controller is programmed to control a change-of-mind shift maneuver of the transmission. By executing a method, the controller detects the change-of-mind shift maneuver, predicts an acceleration profile of the turbine for a next-requested shift of the detected shift maneuver as a function of a calibrated desired shift time and an output speed of the transmission, calculates a shift control value for a next-requested shift of the shift maneuver using the predicted acceleration profile, and executes the next-requested shift via the clutches using the calculated shift control value. The shift maneuver may be a skip-at-sync quick shift-to-quick shift or power downshift-to-power downshift. The shift value may be a clutch pressure for an offgoing holding clutch or a torque management level from an engine.
    Type: Application
    Filed: August 5, 2015
    Publication date: February 9, 2017
    Applicant: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: Dara Monajemi, Brian H Fiore, Jeremy V Horgan
  • Publication number: 20160076643
    Abstract: A method for monitoring a fixed-gear transmission includes deriving a node speed relationship for each of the planetary gear sets based upon a center distance and a gear ratio and determining equivalent speed parameters for nodes of the planetary gear sets based upon a transmission input speed state, an intermediate node speed state and a transmission output speed state. A clutch slip speed relationship is determined for each of the clutches based upon the node speed relationships for the planetary gear sets and the equivalent speed parameters for nodes of the planetary gear sets. Rotational speed sensors monitor the input transmission speed, the intermediate node speed and the transmission output speed. A clutch slip speed for each of the clutches is determined based upon the respective clutch slip speed relationship and the monitored input transmission speed, the monitored intermediate node speed and the monitored transmission output speed.
    Type: Application
    Filed: September 15, 2014
    Publication date: March 17, 2016
    Inventors: Brian J. Pellerito, Dara Monajemi, Brian H. Fiore, Joel H. Gunderson
  • Patent number: 9249881
    Abstract: A method of controlling clutches in a multi-speed transmission includes beginning a current shift from a starting gear to an initial target gear, and determining whether the current shift is a downshift. The method determines jump-stage eligibility of a first clutch. Determining jump-stage eligibility includes determining whether the first clutch is a holding clutch for the current shift, and determining whether the first clutch is an off-going clutch for a legal shift from the initial starting gear to an adjusted target gear having a higher speed ratio than the initial starting gear. If the first clutch is not jump-stage eligible, the method maintains pressure of the first clutch at a current pressure. If the first clutch is jump-stage eligible, the method reduces the pressure of the first clutch from the current pressure to a staging pressure, which is greater than a slipping pressure.
    Type: Grant
    Filed: February 23, 2015
    Date of Patent: February 2, 2016
    Assignee: GM Global Technology Operations LLC
    Inventors: Dara Monajemi, Jeremy V. Horgan, Matthew Pruski, Brian H. Fiore
  • Patent number: 9188222
    Abstract: A vehicle includes a prime mover, input clutch, transmission, and controller. The transmission, which is selectively connected to the output shaft via the input clutch, has multiple friction clutches, including respective offgoing and oncoming clutches for a negative torque upshift. The controller includes a torque request module, offgoing clutch module, and oncoming clutch module. The torque request module limits input torque into the transmission during the negative torque upshift. The offgoing control module determines actual offgoing clutch torque capacity of the offgoing clutch, calculates an actual offgoing clutch pressure using the actual offgoing clutch torque capacity, and controls the offgoing clutch through the shift using the actual offgoing clutch pressure. The oncoming control module controls the oncoming clutch through multiple stages of control of the oncoming clutch, including a fill, staging, ramp, and quick-lock stage.
    Type: Grant
    Filed: April 10, 2014
    Date of Patent: November 17, 2015
    Assignee: GM Global Technology Operations LLC
    Inventors: Dara Monajemi, Matthew Pruski
  • Publication number: 20150292616
    Abstract: A vehicle includes a prime mover, input clutch, transmission, and controller. The transmission, which is selectively connected to the output shaft via the input clutch, has multiple friction clutches, including respective offgoing and oncoming clutches for a negative torque upshift. The controller includes a torque request module, offgoing clutch module, and oncoming clutch module. The torque request module limits input torque into the transmission during the negative torque upshift. The offgoing control module determines actual offgoing clutch torque capacity of the offgoing clutch, calculates an actual offgoing clutch pressure using the actual offgoing clutch torque capacity, and controls the offgoing clutch through the shift using the actual offgoing clutch pressure. The oncoming control module controls the oncoming clutch through multiple stages of control of the oncoming clutch, including a fill, staging, ramp, and quick-lock stage.
    Type: Application
    Filed: April 10, 2014
    Publication date: October 15, 2015
    Applicant: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: Dara Monajemi, Matthew Pruski
  • Patent number: 8965653
    Abstract: A vehicle transmission includes a plurality of oncoming clutches that are hydraulically-actuated. A controller is operatively connected to the plurality of oncoming clutches. An algorithm stored on and executable by the controller causes the controller to determine if at least one predefined coast condition is met and identify the plurality of oncoming clutches configured to be engageable during a downshift event from an initial gear ratio to respective other gear ratios. The initial gear ratio is greater than each of the respective other gear ratios. The algorithm causes the controller to generate a first pressure command to at least partially pressurize a first one of the oncoming clutches to a first staging pressure (PS1) if the at least one predefined coast condition is met prior to the downshift event. The first staging pressure (PS1) is defined as a first return spring pressure (PR1) minus a first variable correction factor (CF1).
    Type: Grant
    Filed: July 24, 2013
    Date of Patent: February 24, 2015
    Assignee: GM Global Technology Operations LLC
    Inventors: Kristopher J. Kokko, Dara Monajemi, David C. Webert, Amanda P. Igel
  • Publication number: 20150032341
    Abstract: A vehicle transmission includes a plurality of oncoming clutches that are hydraulically-actuated. A controller is operatively connected to the plurality of oncoming clutches. An algorithm stored on and executable by the controller causes the controller to determine if at least one predefined coast condition is met and identify the plurality of oncoming clutches configured to be engageable during a downshift event from an initial gear ratio to respective other gear ratios. The initial gear ratio is greater than each of the respective other gear ratios. The algorithm causes the controller to generate a first pressure command to at least partially pressurize a first one of the oncoming clutches to a first staging pressure (PS1) if the at least one predefined coast condition is met prior to the downshift event. The first staging pressure (PS1) is defined as a first return spring pressure (PR1) minus a first variable correction factor (CF1).
    Type: Application
    Filed: July 24, 2013
    Publication date: January 29, 2015
    Applicant: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: Kristopher J. Kokko, Dara Monajemi, David C. Webert, Amanda P. Igel
  • Patent number: 8886423
    Abstract: A vehicle includes an engine, an engine control module (ECM), and a transmission assembly. The transmission assembly includes a transmission control module (TCM), a stationary member, gear sets, an input member connected to the engine and one of the gear sets, and a binary clutch assembly. The binary clutch assembly has a freewheeling element and a binary device preventing rotation of the binary clutch assembly when applied, and allows the binary clutch assembly to freewheel when released. The TCM controls a slip speed differential of the binary clutch assembly when the vehicle is coasting in a forward gear state. The TCM determines a threshold maximum slip speed differential, calculates a required engine speed for achieving no more than the threshold maximum, and transmits the required engine speed to the ECM to maintain engine speed at or above the required engine speed. Doing so enables transmission state and direction change flexibility.
    Type: Grant
    Filed: September 20, 2013
    Date of Patent: November 11, 2014
    Assignee: GM Global Technology Operations LLC
    Inventors: Randall B. Dlugoss, Matthew Pruski, Dara Monajemi
  • Patent number: 8510005
    Abstract: A method for controlling the torque phase of a clutch-to-clutch power downshift in a vehicle includes determining, during a near-sync boost (NSB) state of the power downshift, a synchronization speed. The method includes estimating, via a controller, a feed-forward clutch pressure that holds a speed of the turbine at the synchronous speed, and then ramping a clutch pressure command to the oncoming clutch to the calculated feed-forward clutch pressure. Closed-loop proportional-integral-derivative (PID) control is initiated over the clutch pressure command during the NSB phase in response to a predetermined PID activation event. A vehicle includes an engine, transmission, torque converter, and a controller. The controller has a processor and memory on which instructions embodying the above method are recorded. Execution of the instructions by the processor causes the controller to execute the method.
    Type: Grant
    Filed: July 19, 2012
    Date of Patent: August 13, 2013
    Assignee: GM Global Technology Operations LLC
    Inventors: Dara Monajemi, Mark David Kieliszewski, Todd J. Thor