Patents by Inventor Darek Tomasz Zatorski

Darek Tomasz Zatorski has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20180355951
    Abstract: The present disclosure is directed to a gas turbine engine, wherein the gas turbine engine defines a longitudinal direction, a radial direction, and a circumferential direction, and an axial centerline extended along the longitudinal direction, and an upstream end and a downstream end along the longitudinal direction. The gas turbine engine includes an annular stationary turbine frame centered around the axial centerline; an engine shaft extended generally along the longitudinal direction; an input shaft extended generally along the longitudinal direction; and a gear assembly including a first gear coupled to the input shaft, a second gear coupled to the turbine frame, and an inner spool coupling the first gear and the second gear, in which the inner spool defines a gear axis extended therethrough. The inner spool, the first gear, and the second gear are together rotatable about the gear axis. The gear axis is rotatable about the axial centerline of the engine.
    Type: Application
    Filed: June 13, 2017
    Publication date: December 13, 2018
    Inventors: Alan Roy Stuart, Darek Tomasz Zatorski
  • Publication number: 20180320632
    Abstract: The present disclosure is directed to a gas turbine engine defining a longitudinal direction, a radial direction, and a circumferential direction, and an upstream end and a downstream end along the longitudinal direction. The gas turbine engine includes a turbine section and a gear assembly within or downstream of the turbine section. The turbine section includes a first rotating component and a second rotating component along the longitudinal direction. The first rotating component includes one or more connecting airfoils coupled to a radially extended rotor, and the second rotating component includes an inner shroud defining a plurality of inner shroud airfoils extended outward of the inner shroud along the radial direction. The second rotating component is coupled to a second shaft connected to an input accessory of the gear assembly, and the first rotating component is coupled to an output accessory of the gear assembly.
    Type: Application
    Filed: February 8, 2017
    Publication date: November 8, 2018
    Inventors: Jeffrey Donald Clements, Darek Tomasz Zatorski, Alan Roy Stuart
  • Publication number: 20180298784
    Abstract: The present disclosure is directed to a gas turbine engine defining a radial direction, a circumferential direction, an axial centerline along a longitudinal direction, and wherein the gas turbine engine defines an upstream end and a downstream end along the longitudinal direction, and wherein the gas turbine engine defines a core flowpath extended generally along the longitudinal direction. The gas turbine engine includes a turbine frame defined around the axial centerline, the turbine frame comprising a first bearing surface disposed inward along the radial direction. The gas turbine engine further includes a turbine rotor assembly including a bearing assembly coupled to the first bearing surface of the turbine frame and the turbine rotor assembly. The turbine rotor assembly further includes a first turbine rotor disposed upstream of the turbine frame and a second turbine rotor disposed downstream of the turbine frame.
    Type: Application
    Filed: April 12, 2017
    Publication date: October 18, 2018
    Inventors: Thomas Ory Moniz, Alan Roy Stuart, Jeffrey Donald Clements, Brandon Wayne Miller, Darek Tomasz Zatorski, Gert Johannes van der Merwe, Joel Francis Kirk, Richard Wesling
  • Publication number: 20180269737
    Abstract: The present disclosure is directed to an electric machine defining a longitudinal direction, a radial direction, and a circumferential direction, and an axial centerline defined along the longitudinal direction. The electric machine includes a rotor assembly that includes a plurality of carriers arranged along the circumferential direction. Each pair of carriers defines a carrier gap therebetween along the circumferential direction, and each carrier includes a rotor magnet. The rotor assembly further includes an outer ring radially outward of and surrounding the plurality of carriers along the circumferential direction, the outer ring defining a unitary structure.
    Type: Application
    Filed: March 17, 2017
    Publication date: September 20, 2018
    Inventors: Daniel Alan Niergarth, Darek Tomasz Zatorski, David William Crall
  • Publication number: 20180258858
    Abstract: The present disclosure is directed to a gas turbine engine defining a radial direction, a circumferential direction, an axial centerline along a longitudinal direction. The gas turbine engine defines an upstream end and a downstream end along the longitudinal direction and includes a turbine frame defined around the axial centerline. The turbine frame includes a first bearing surface, a second bearing surface, and a third bearing surface. The first bearing surface corresponds to a first turbine rotor, the second bearing surface corresponds to a second turbine rotor, and the third bearing surface corresponds to a third turbine rotor, and each turbine rotor is independently rotatable.
    Type: Application
    Filed: March 7, 2017
    Publication date: September 13, 2018
    Inventors: Thomas Ory Moniz, Alan Roy Stuart, Jeffrey Donald Clements, Brandon Wayne Miller, Darek Tomasz Zatorski
  • Publication number: 20180223732
    Abstract: The present disclosure is directed to a gas turbine engine defining a longitudinal direction, a radial direction, and a circumferential direction, and an upstream end and a downstream end along the longitudinal direction. The gas turbine engine includes a turbine section, a gearbox proximate to the turbine section, and a driveshaft. The turbine section includes a first rotating component interdigitated with a second rotating component along the longitudinal direction. The first rotating component includes an outer shroud defining a plurality of outer shroud airfoils extended inward of the outer shroud along the radial direction and one or more connecting airfoils coupling the outer shroud to a radially extended rotor. The second rotating component includes an inner shroud defining a plurality of inner shroud airfoils extended outward of the inner shroud along the radial direction. The second rotating component is coupled to an input shaft connected to an input gear of the gearbox.
    Type: Application
    Filed: February 8, 2017
    Publication date: August 9, 2018
    Inventors: Jeffrey Donald Clements, Darek Tomasz Zatorski, Alan Roy Stuart
  • Publication number: 20180209274
    Abstract: The present disclosure is directed to a gas turbine engine defining a radial direction, a circumferential direction, an axial centerline along a longitudinal direction, and wherein the gas turbine engine defines an upstream end and a downstream end along the longitudinal direction. The gas turbine engine includes a first turbine rotor comprising an inner shroud, an outer shroud outward of the inner shroud in the radial direction, at least one connecting airfoil coupling the inner shroud and the outer shroud at least partially along the radial direction, and an outer band outward of the outer shroud in the radial direction and extended at least partially in the circumferential direction, and a plurality of connecting members couples the outer shroud and the outer band.
    Type: Application
    Filed: January 25, 2017
    Publication date: July 26, 2018
    Inventors: Darek Tomasz Zatorski, Brandon Wayne Miller, Richard Wesling, Gert Johannes van der Merwe
  • Publication number: 20180065740
    Abstract: An aircraft includes a fuselage, a forward wing assembly, and aft wing assembly, and a propulsion system. The propulsion system includes a port forward propulsor and a starboard forward propulsor, each of which rotatable between a forward thrust position and a vertical thrust position and together defining a maximum forward thrust capability. The propulsion system also includes a port aft propulsor and a starboard aft propulsor, each of which also rotatable between a forward thrust position and a vertical thrust position, and together defining a maximum aft thrust capability. The maximum forward thrust capability is different than the maximum aft thrust capability to achieve certain efficiencies.
    Type: Application
    Filed: September 8, 2016
    Publication date: March 8, 2018
    Inventors: Randy M. Vondrell, Matthew Ryan Polakowski, Kurt David Murrow, Glenn Crabtree, Darek Tomasz Zatorski
  • Publication number: 20180065743
    Abstract: A method for operating a propulsion system of an aircraft includes moving a plurality of forward and aft propulsors to a vertical thrust position. While in the vertical thrust positions, the method also includes providing a first forward to aft ratio of electric power to the plurality of forward and aft propulsors. The method also includes moving the plurality of forward and aft propulsors to a forward thrust position. While in the forward thrust positions, the method also includes providing a second forward to aft ratio of electric power to the plurality of forward and aft propulsors. The first forward to aft ratio of electric power is different than the second forward to aft ratio of electric power to provide certain efficiencies for the aircraft.
    Type: Application
    Filed: September 8, 2016
    Publication date: March 8, 2018
    Inventors: Randy M. Vondrell, Matthew Ryan Polakowski, Kurt David Murrow, Glenn Crabtree, Darek Tomasz Zatorski
  • Publication number: 20180065742
    Abstract: An aircraft includes a fuselage and a wing assembly attached to or formed integrally with the fuselage. The aircraft also includes a propulsion system having a port propulsor and a starboard propulsor. The port and starboard propulsors are each attached to the wing assembly on opposing sides of the fuselage and are rotatable between a forward thrust position and a vertical thrust position. The propulsion system also includes a supplemental propulsor mounted to the fuselage to provide certain efficiencies for the aircraft.
    Type: Application
    Filed: September 8, 2016
    Publication date: March 8, 2018
    Inventors: Randy M. Vondrell, Matthew Ryan Polakowski, Kurt David Murrow, Glenn Crabtree, Darek Tomasz Zatorski
  • Publication number: 20180065741
    Abstract: An aircraft includes a fuselage, a forward wing assembly, and aft wing assembly, and a propulsion system. The propulsion system includes a first primary thrust propulsor and a first secondary thrust propulsor, the first primary thrust propulsor being different than the first secondary thrust propulsor. Both the first primary thrust propulsor and the first secondary thrust propulsor are mounted to the same one of: a starboard side of the aft wing assembly, a port side of the aft wing assembly, a starboard side of the forward wing assembly, or a port side of the forward wing assembly.
    Type: Application
    Filed: September 8, 2016
    Publication date: March 8, 2018
    Inventors: Randy M. Vondrell, Matthew Ryan Polakowski, Kurt David Murrow, Glenn Crabtree, Darek Tomasz Zatorski
  • Publication number: 20180065739
    Abstract: An aircraft includes a fuselage and a wing assembly attached to or formed integrally with the fuselage. The aircraft also includes a hybrid electric propulsion system having a port propulsor and a starboard propulsor, with the port and starboard propulsors attached to the wing assembly on opposing sides of the fuselage and rotatable between a forward thrust position and a vertical thrust position. The hybrid electric propulsion system additionally includes an electric power source including a combustion engine and an electric generator, with the electric generator being driven by the combustion engine. The electric generator is in electrical communication with each of the port and starboard propulsors for powering the port and starboard propulsors.
    Type: Application
    Filed: September 8, 2016
    Publication date: March 8, 2018
    Inventors: Randy M. Vondrell, Matthew Ryan Polakowski, Kurt David Murrow, Glenn Crabtree, Darek Tomasz Zatorski
  • Patent number: 9878501
    Abstract: A method of manufacturing a frangible laminate is provided. The method comprises constructing a reinforced polymer matrix, cutting the reinforced polymer matrix into a plurality of laminae, forming a laminate via stacking the plurality of laminae and at least one energy dissipating member, and consolidating the laminate.
    Type: Grant
    Filed: January 14, 2015
    Date of Patent: January 30, 2018
    Assignee: General Electric Company
    Inventors: Darek Tomasz Zatorski, Ian Francis Prentice, Randy M. Vondrell, Andrew Breeze-Stringfellow
  • Patent number: 9835037
    Abstract: An actuation assembly for a variable pitch fan for a gas turbine engine is provided. The actuation assembly generally includes a plurality of fan blades, a scheduling ring, and a plurality of linkage arms. The plurality of fan blades are rotatably coupled to a disk and extend radially therefrom. The scheduling ring is rotatable relative to the disk and has a plurality of slots. Each of the plurality of linkage arms are operatively coupled to one of the plurality of fan blades and to one of the plurality of slots. Each of the plurality of fan blades rotate according to a blade pitch schedule defined by the slot to which it is operatively coupled, and at least two of the plurality of slots define different blade pitch schedules.
    Type: Grant
    Filed: June 22, 2015
    Date of Patent: December 5, 2017
    Assignee: General electric Company
    Inventors: Trevor Goerig, Darek Tomasz Zatorski, Tsuguji Nakano, Patrick John Lonneman
  • Patent number: 9828862
    Abstract: A frangible airfoil that mitigates adverse conditions associated with release of material resulting from impact damage to the composite blade is provided, the airfoil having provisions for dissipating energy, self-shredding, and predetermined release trajectory.
    Type: Grant
    Filed: January 14, 2015
    Date of Patent: November 28, 2017
    Assignee: General Electric Company
    Inventors: Darek Tomasz Zatorski, Ian Francis Prentice, Randy M. Vondrell, Andrew Breeze-Stringfellow, Raymond Anthony Humble
  • Patent number: 9777642
    Abstract: A method and system for a turbofan gas turbine engine system is provided. The gas turbine engine system includes a variable pitch fan (VPF) assembly coupled to a first rotatable shaft and a low pressure compressor LPC coupled to a second rotatable shaft. The LPC including a plurality of variable pitch stator vanes interdigitated with rows of blades of a rotor of the LPC. The gas turbine engine system also includes a speed reduction device coupled to said first rotatable shaft and said second rotatable shaft. The gas turbine engine system further includes a modulating pressure relief valve positioned between an outlet of said LPC and a bypass duct and a controller configured to schedule a position of said plurality of variable pitch stator vanes and said modulating pressure relief valve in response to an operational state of said turbofan gas turbine engine system and a temperature associated with said LPC.
    Type: Grant
    Filed: October 22, 2015
    Date of Patent: October 3, 2017
    Assignee: General Electric Company
    Inventors: Kurt David Murrow, Andrew Breeze-Stringfellow, Randy M. Vondrell, Tsuguji Nakano, Jeffrey Anthony Hamel, Darek Tomasz Zatorski
  • Publication number: 20170234324
    Abstract: The variable pitch propeller assembly includes a hub. The variable pitch propeller assembly also includes a plurality of propeller blade assemblies spaced circumferentially about the hub. Each of the plurality of propeller blade assemblies configured to rotate a respective propeller blade. The variable pitch propeller assembly also includes a hydraulic fluid port assembly integrally formed and including at least three hydraulic fluid ports configured to receive respective flows of hydraulic fluid from a stationary hydraulic fluid transfer sleeve. The variable pitch propeller assembly also includes a pitch actuator assembly coupled in flow communication with at least three hydraulic fluid ports through respective hydraulic fluid transfer tubes. The pitch actuator coupled to the plurality of propeller blade assemblies to selectively control a pitch of the propeller blades. The pitch actuator assembly includes a travel stop configured to limit a rotation of at least one of the pitch actuator assemblies.
    Type: Application
    Filed: February 12, 2016
    Publication date: August 17, 2017
    Inventors: Daniel Alan Niergarth, Darek Tomasz Zatorski, Christopher James Kroger
  • Publication number: 20170167507
    Abstract: A method of transferring a fluid flow from a stationary member to an adjacent rotatable member and a fluid flow transfer system are provided. The system includes one or more fluid supply conduits and a gearbox flow path configured to channel the flow of fluid through the power gearbox. The system also includes a transfer sleeve device configured to receive the flow of fluid from the gearbox flow path. The transfer sleeve device includes a stationary transfer sleeve member and a rotatable transfer sleeve member. The transfer sleeve device is configured to transfer the flow of fluid between the stationary transfer sleeve member and the rotatable transfer sleeve member. A pitch change mechanism (PCM) actuator is configured to receive the flow of fluid through one or more of a plurality of flow ports wherein the plurality of flow ports direct the flow of fluid to a respective actuator.
    Type: Application
    Filed: December 9, 2015
    Publication date: June 15, 2017
    Inventors: Daniel Alan Niergarth, Brandon Wayne Miller, Darek Tomasz Zatorski, Christopher James Kroger
  • Publication number: 20170138307
    Abstract: A gas turbine engine includes a core and a tie shaft. The tie shaft is rotatable about an axial direction of the gas turbine engine by the core of the gas turbine engine. The gas turbine engine additionally includes a modular fan having a plurality of fan blades and a frame. The plurality fan blades are attached to the frame and the frame is slidably received on the tie shaft of the gas turbine engine. The modular fan additionally includes an attachment member removably attaching the frame to the tie shaft of the gas turbine engine to removably install the modular fan in the gas turbine engine.
    Type: Application
    Filed: November 17, 2015
    Publication date: May 18, 2017
    Inventors: Brandon Wayne Miller, Randy M. Vondrell, Darek Tomasz Zatorski, Daniel Alan Niergarth
  • Publication number: 20170138306
    Abstract: A gas turbine engine includes a core turbine engine and a fan mechanically coupled to the core turbine engine. The fan includes a plurality of fan blades, each fan blade defining a base and an inner end along a radial direction of the gas turbine engine. The fan also includes a hub covering the base of each of the plurality of fan blades. Further, the fan includes one or more bearings for supporting rotation of the plurality of fan blades. The one or more bearings define a fan bearing radius along a radial direction of the gas turbine engine. Similarly, the hub defines a hub radius along the radial direction of the gas turbine engine. The ratio of the hub radius to the fan bearing radius is less than about three, providing for desired packaging of the various components within the fan of the gas turbine engine.
    Type: Application
    Filed: November 17, 2015
    Publication date: May 18, 2017
    Inventors: Brandon Wayne Miller, Daniel Alan Niergarth, Darek Tomasz Zatorski