Patents by Inventor Daren Daugaard

Daren Daugaard has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20220228082
    Abstract: In some variations, the invention provides a biocarbon pellet comprising: 35 wt % to 99 wt % of a biogenic reagent, wherein the biogenic reagent comprises, on a dry basis, at least 60 wt % carbon; 0 wt % to 35 wt % water moisture; and 1 wt % to 30 wt % of a binder, wherein the biocarbon pellet is characterized by an adjustable Hardgrove Grindability Index (HGI) from about 30 to about 120, as shown in the Examples. The pellet HGI is adjustable by controlling process conditions and the pellet binder. The binder can be an organic binder or an inorganic binder. The carbon is renewable as determined from a measurement of the 14C/12C isotopic ratio. Many processes of making and using the biocarbon pellets are described. Applications of the biocarbon pellets include pulverized coal boilers, furnaces for making metals such as iron or silicon, and gasifiers for producing reducing gas.
    Type: Application
    Filed: January 20, 2022
    Publication date: July 21, 2022
    Inventors: James A. Mennell, Daren Daugaard, Dustin Slack, Forrest S. Graham
  • Publication number: 20220228081
    Abstract: In some variations, the invention provides a biocarbon pellet comprising: 35 wt % to 99 wt % of a biogenic reagent, wherein the biogenic reagent comprises, on a dry basis, at least 60 wt % carbon; 0 wt % to 35 wt % water moisture; and 1 wt % to 30 wt % of a binder, wherein the biocarbon pellet is characterized by an adjustable Hardgrove Grindability Index (HGI) from about 30 to about 120, as shown in the Examples. The pellet HGI is adjustable by controlling process conditions and the pellet binder. The binder can be an organic binder or an inorganic binder. The carbon is renewable as determined from a measurement of the 14C/12C isotopic ratio. Many processes of making and using the biocarbon pellets are described. Applications of the biocarbon pellets include pulverized coal boilers, furnaces for making metals such as iron or silicon, and gasifiers for producing reducing gas.
    Type: Application
    Filed: January 20, 2022
    Publication date: July 21, 2022
    Inventors: James A. Mennell, Daren Daugaard, Dustin Slack, Forrest S. Graham
  • Publication number: 20220228080
    Abstract: In some variations, the invention provides a biocarbon pellet comprising: 35 wt % to 99 wt % of a biogenic reagent, wherein the biogenic reagent comprises, on a dry basis, at least 60 wt % carbon; 0 wt % to 35 wt % water moisture; and 1 wt % to 30 wt % of a binder, wherein the biocarbon pellet is characterized by an adjustable Hardgrove Grindability Index (HGI) from about 30 to about 120, as shown in the Examples. The pellet HGI is adjustable by controlling process conditions and the pellet binder. The binder can be an organic binder or an inorganic binder. The carbon is renewable as determined from a measurement of the 14C/12C isotopic ratio. Many processes of making and using the biocarbon pellets are described. Applications of the biocarbon pellets include pulverized coal boilers, furnaces for making metals such as iron or silicon, and gasifiers for producing reducing gas.
    Type: Application
    Filed: January 20, 2022
    Publication date: July 21, 2022
    Inventors: James A. Mennell, Daren Daugaard, Dustin Slack, Forrest S. Graham
  • Publication number: 20220162077
    Abstract: Improved processes and systems are disclosed for producing renewable hydrogen suitable for reducing metal ores, as well as for producing activated carbon. Some variations provide a process comprising: pyrolyzing biomass to generate a biogenic reagent comprising carbon and a pyrolysis off-gas; converting the pyrolysis off-gas to additional reducing gas and/or heat; reacting at least some of the biogenic reagent with a reactant to generate a reducing gas; and chemically reducing a metal oxide in the presence of the reducing gas. Some variations provide a process for producing renewable hydrogen by biomass pyrolysis to generate a biogenic reagent, conversion of the biogenic reagent to a reducing gas, and separation and recovery of hydrogen from the reducing gas. A reducing-gas composition for reducing a metal oxide is provided, comprising renewable hydrogen according to a hydrogen-isotope analysis. Reacted biogenic reagent may also be recovered as an activated carbon product. Many variations are disclosed.
    Type: Application
    Filed: November 19, 2021
    Publication date: May 26, 2022
    Inventors: James A. Mennell, Daren Daugaard, Dustin Slack
  • Publication number: 20220162064
    Abstract: Improved processes and systems are disclosed for producing renewable hydrogen suitable for reducing metal ores, as well as for producing activated carbon. Some variations provide a process comprising: pyrolyzing biomass to generate a biogenic reagent comprising carbon and a pyrolysis off-gas; converting the pyrolysis off-gas to additional reducing gas and/or heat; reacting at least some of the biogenic reagent with a reactant to generate a reducing gas; and chemically reducing a metal oxide in the presence of the reducing gas. Some variations provide a process for producing renewable hydrogen by biomass pyrolysis to generate a biogenic reagent, conversion of the biogenic reagent to a reducing gas, and separation and recovery of hydrogen from the reducing gas. A reducing-gas composition for reducing a metal oxide is provided, comprising renewable hydrogen according to a hydrogen-isotope analysis. Reacted biogenic reagent may also be recovered as an activated carbon product. Many variations are disclosed.
    Type: Application
    Filed: November 19, 2021
    Publication date: May 26, 2022
    Inventors: James A. Mennell, Daren Daugaard, Dustin Slack
  • Publication number: 20220162726
    Abstract: Improved processes and systems are disclosed for producing renewable hydrogen suitable for reducing metal ores, as well as for producing activated carbon. Some variations provide a process comprising: pyrolyzing biomass to generate a biogenic reagent comprising carbon and a pyrolysis off-gas; converting the pyrolysis off-gas to additional reducing gas and/or heat; reacting at least some of the biogenic reagent with a reactant to generate a reducing gas; and chemically reducing a metal oxide in the presence of the reducing gas. Some variations provide a process for producing renewable hydrogen by biomass pyrolysis to generate a biogenic reagent, conversion of the biogenic reagent to a reducing gas, and separation and recovery of hydrogen from the reducing gas. A reducing-gas composition for reducing a metal oxide is provided, comprising renewable hydrogen according to a hydrogen-isotope analysis. Reacted biogenic reagent may also be recovered as an activated carbon product. Many variations are disclosed.
    Type: Application
    Filed: November 19, 2021
    Publication date: May 26, 2022
    Inventors: James A. Mennell, Daren Daugaard, Dustin Slack
  • Publication number: 20220162076
    Abstract: Improved processes and systems are disclosed for producing renewable hydrogen suitable for reducing metal ores, as well as for producing activated carbon. Some variations provide a process comprising: pyrolyzing biomass to generate a biogenic reagent comprising carbon and a pyrolysis off-gas; converting the pyrolysis off-gas to additional reducing gas and/or heat; reacting at least some of the biogenic reagent with a reactant to generate a reducing gas; and chemically reducing a metal oxide in the presence of the reducing gas. Some variations provide a process for producing renewable hydrogen by biomass pyrolysis to generate a biogenic reagent, conversion of the biogenic reagent to a reducing gas, and separation and recovery of hydrogen from the reducing gas. A reducing-gas composition for reducing a metal oxide is provided, comprising renewable hydrogen according to a hydrogen-isotope analysis. Reacted biogenic reagent may also be recovered as an activated carbon product. Many variations are disclosed.
    Type: Application
    Filed: November 19, 2021
    Publication date: May 26, 2022
    Inventors: James A. Mennell, Daren Daugaard, Dustin Slack
  • Publication number: 20220162725
    Abstract: Improved processes and systems are disclosed for producing renewable hydrogen suitable for reducing metal ores, as well as for producing activated carbon. Some variations provide a process comprising: pyrolyzing biomass to generate a biogenic reagent comprising carbon and a pyrolysis off-gas; converting the pyrolysis off-gas to additional reducing gas and/or heat; reacting at least some of the biogenic reagent with a reactant to generate a reducing gas; and chemically reducing a metal oxide in the presence of the reducing gas. Some variations provide a process for producing renewable hydrogen by biomass pyrolysis to generate a biogenic reagent, conversion of the biogenic reagent to a reducing gas, and separation and recovery of hydrogen from the reducing gas. A reducing-gas composition for reducing a metal oxide is provided, comprising renewable hydrogen according to a hydrogen-isotope analysis. Reacted biogenic reagent may also be recovered as an activated carbon product. Many variations are disclosed.
    Type: Application
    Filed: November 19, 2021
    Publication date: May 26, 2022
    Inventors: James A. Mennell, Daren Daugaard, Dustin Slack
  • Publication number: 20220098685
    Abstract: Some variations provide a composition for reducing a metal ore, the composition comprising a carbon-metal ore particulate, wherein the carbon-metal ore particulate comprises at least about 0.1 wt % to at most about 50 wt % fixed carbon on a moisture-free and ash-free basis, and wherein the carbon is at least 50% renewable carbon as determined from a measurement of the 14C/12C isotopic ratio. Some variations provide a process for reducing a metal ore, comprising: providing a biomass feedstock; pyrolyzing the feedstock to generate a biogenic reagent comprising carbon and a pyrolysis off-gas comprising hydrogen or carbon monoxide; obtaining a metal ore comprising a metal oxide; combining the carbon with the metal ore, to generate a carbon-metal ore particulate; optionally pelletizing the carbon-metal ore particulate; and utilizing the pyrolysis off-gas to chemically reduce the metal oxide to elemental metal, such as iron.
    Type: Application
    Filed: September 25, 2021
    Publication date: March 31, 2022
    Inventors: James A. Mennell, Daren Daugaard, Dustin Slack
  • Publication number: 20220098701
    Abstract: Some variations provide a composition for reducing a metal ore, the composition comprising a carbon-metal ore particulate, wherein the carbon-metal ore particulate comprises at least about 0.1 wt % to at most about 50 wt % fixed carbon on a moisture-free and ash-free basis, and wherein the carbon is at least 50% renewable carbon as determined from a measurement of the 14C/12C isotopic ratio. Some variations provide a process for reducing a metal ore, comprising: providing a biomass feedstock; pyrolyzing the feedstock to generate a biogenic reagent comprising carbon and a pyrolysis off-gas comprising hydrogen or carbon monoxide; obtaining a metal ore comprising a metal oxide; combining the carbon with the metal ore, to generate a carbon-metal ore particulate; optionally pelletizing the carbon-metal ore particulate; and utilizing the pyrolysis off-gas to chemically reduce the metal oxide to elemental metal, such as iron.
    Type: Application
    Filed: September 25, 2021
    Publication date: March 31, 2022
    Inventors: James A. Mennell, Daren Daugaard, Dustin Slack
  • Publication number: 20220098700
    Abstract: Some variations provide a composition for reducing a metal ore, the composition comprising a carbon-metal ore particulate, wherein the carbon-metal ore particulate comprises at least about 0.1 wt % to at most about 50 wt % fixed carbon on a moisture-free and ash-free basis, and wherein the carbon is at least 50% renewable carbon as determined from a measurement of the 14C/12C isotopic ratio. Some variations provide a process for reducing a metal ore, comprising: providing a biomass feedstock; pyrolyzing the feedstock to generate a biogenic reagent comprising carbon and a pyrolysis off-gas comprising hydrogen or carbon monoxide; obtaining a metal ore comprising a metal oxide; combining the carbon with the metal ore, to generate a carbon-metal ore particulate; optionally pelletizing the carbon-metal ore particulate; and utilizing the pyrolysis off-gas to chemically reduce the metal oxide to elemental metal, such as iron.
    Type: Application
    Filed: September 25, 2021
    Publication date: March 31, 2022
    Inventors: James A. Mennell, Daren Daugaard, Dustin Slack
  • Patent number: 9909067
    Abstract: Various biomass reactors systems and methods of pyrolyzing biomass are disclosed. One type of biomass reactor system comprises a plurality of biomass processing stations configured in series, each station comprising an auger reactor including an auger inlet for receiving biomass and a transfer screw for conveying the biomass through the auger reactor.
    Type: Grant
    Filed: March 4, 2014
    Date of Patent: March 6, 2018
    Assignee: COOL PLANET ENERGY SYSTEMS, INC.
    Inventors: Daren Daugaard, Davy Tong, Vern S. Traxler, Vital Aelion, Gary Podrebarac, James Hillier, Michael C. Cheiky
  • Publication number: 20160304787
    Abstract: A method is described for reducing the carbon footprint of any commercially important industrial conversion process. The output of this conversion process can be combustible fuels, chemicals, electricity or heat energy. In its broadest form, a carbon negative module outputs energy to a conversion energy and this energy replaces conventional fossil-fuel based energy. A sequesterable carbonaceous solid is produced by the carbon negative process which represents a net carbon withdrawal from the atmosphere.
    Type: Application
    Filed: February 12, 2016
    Publication date: October 20, 2016
    Inventors: Vital AELION, Daren DAUGAARD, Wilson HAGO
  • Patent number: 9260666
    Abstract: A method is described for reducing the carbon footprint of any commercially important industrial conversion process. The output of this conversion process can be combustible fuels, chemicals, electricity or heat energy. In its broadest form, a carbon negative module outputs energy to a conversion energy and this energy replaces conventional fossil-fuel based energy. A sequesterable carbonaceous solid is produced by the carbon negative process which represents a net carbon withdrawal from the atmosphere.
    Type: Grant
    Filed: December 23, 2013
    Date of Patent: February 16, 2016
    Assignee: Cool Planet Energy Systems, Inc.
    Inventors: Vital Aelion, Daren Daugaard, Wilson Hago
  • Publication number: 20140183022
    Abstract: Various biomass reactors systems and methods of pyrolyzing biomass are disclosed. One type of biomass reactor system comprises a plurality of biomass processing stations configured in series, each station comprising an auger reactor including an auger inlet for receiving biomass and a transfer screw for conveying the biomass through the auger reactor.
    Type: Application
    Filed: March 4, 2014
    Publication date: July 3, 2014
    Applicant: COOL PLANET ENERGY SYSTEMS, INC.
    Inventors: Daren DAUGAARD, Davy TONG, Vern S. TRAXLER, Vital AELION, Gary PODREBARAC, James HILLIER, Michael C. CHEIKY
  • Publication number: 20140109638
    Abstract: A method is described for reducing the carbon footprint of any commercially important industrial conversion process. The output of this conversion process can be combustible fuels, chemicals, electricity or heat energy. In its broadest form, a carbon negative module outputs energy to a conversion energy and this energy replaces conventional fossil-fuel based energy. A sequesterable carbonaceous solid is produced by the carbon negative process which represents a net carbon withdrawal from the atmosphere.
    Type: Application
    Filed: December 23, 2013
    Publication date: April 24, 2014
    Applicant: Cool Planet Energy Systems, Inc.
    Inventors: Vital AELION, Daren DAUGAARD, Wilson HAGO
  • Patent number: 8183422
    Abstract: Described is a process for converting pyrolysis oil obtained by pyrolysis of biomass into fuel range hydrocarbon by alcoholysis of pyrolysis oil with subsequent hydrotreatment. A straightforward methodology to prepare upgradeable pyrolysis oil via alcoholysis. A method hydrotreating technology for oxygen removal and hydrocarbon production. The resulting hydrocarbon products are 100% fungible with conventional transportation fuels.
    Type: Grant
    Filed: October 17, 2011
    Date of Patent: May 22, 2012
    Assignee: ConocoPhillips Company
    Inventors: Edgar Lotero Alegria, Kristi Fjare, Daren Daugaard, Alexandru Platon
  • Publication number: 20120035404
    Abstract: The present invention relates to a process for converting pyrolysis oil obtained by pyrolysis of biomass into fuel range hydrocarbon by alcoholysis of pyrolysis oil with subsequent hydrotreatment. The current invention provides straightforward methodology to prepare upgradable pyrolysis oil via alcoholysis. The invention uses hydrotreating technology for oxygen removal and hydrocarbon production. The resulting hydrocarbon products are 100% fungible with conventional transportation fuels.
    Type: Application
    Filed: October 17, 2011
    Publication date: February 9, 2012
    Applicant: CONOCOPHILLIPS COMPANY
    Inventors: Edgar Lotero ALEGRIA, Kristi FJARE, Daren DAUGAARD, Alexandru PLATON