Patents by Inventor Daren M. Beam

Daren M. Beam has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20220218639
    Abstract: Compositions and methods for therapeutic delivery are disclosed. More particularly, the present disclosure relates to nanoparticle compositions that sequester the activity of a target molecule while leaving other domains accessible to bind targeted tissues of interest. Methods for thrombus dissolution include administering a nanoparticle reversibly coupled to a target molecule that can dissolve a blood clot. Compositions and methods for inducing blood clotting are also disclosed. Methods for inducing blood clotting include administering a nanoparticle reversibly coupled to a target molecule that can induce the formation of a blood clot. Methods for sequestering a target molecule are also disclosed. The method includes reversibly coupling a target molecule to a nanoparticle having an affinity ligand that reversibly couples the target molecule, and thus, sequesters the target molecule activity until the target molecule interacts with its substrate resulting in the release of the target molecule.
    Type: Application
    Filed: November 18, 2021
    Publication date: July 14, 2022
    Inventors: Jeffrey A. Kline, Nathan J. Alves, Daren M. Beam
  • Patent number: 11207282
    Abstract: Compositions and methods for therapeutic delivery are disclosed. More particularly, the present disclosure relates to nanoparticle compositions that sequester the activity of a target molecule while leaving other domains accessible to bind targeted tissues of interest. Methods for thrombus dissolution include administering a nanoparticle reversibly coupled to a target molecule that can dissolve a blood clot. Compositions and methods for inducing blood clotting are also disclosed. Methods for inducing blood clotting include administering a nanoparticle reversibly coupled to a target molecule that can induce the formation of a blood clot. Methods for sequestering a target molecule are also disclosed. The method includes reversibly coupling a target molecule to a nanoparticle having an affinity ligand that reversibly couples the target molecule, and thus, sequesters the target molecule activity until the target molecule interacts with its substrate resulting in the release of the target molecule.
    Type: Grant
    Filed: February 18, 2020
    Date of Patent: December 28, 2021
    Assignee: Indiana University Research and Technology Corporation
    Inventors: Jeffrey A. Kline, Nathan J. Alves, Daren M. Beam
  • Publication number: 20200261386
    Abstract: Compositions and methods for therapeutic delivery are disclosed. More particularly, the present disclosure relates to nanoparticle compositions that sequester the activity of a target molecule while leaving other domains accessible to bind targeted tissues of interest. Methods for thrombus dissolution include administering a nanoparticle reversibly coupled to a target molecule that can dissolve a blood clot. Compositions and methods for inducing blood clotting are also disclosed. Methods for inducing blood clotting include administering a nanoparticle reversibly coupled to a target molecule that can induce the formation of a blood clot. Methods for sequestering a target molecule are also disclosed. The method includes reversibly coupling a target molecule to a nanoparticle having an affinity ligand that reversibly couples the target molecule, and thus, sequesters the target molecule activity until the target molecule interacts with its substrate resulting in the release of the target molecule.
    Type: Application
    Filed: February 18, 2020
    Publication date: August 20, 2020
    Inventors: Jeffrey A. Kline, Nathan J. Alves, Daren M. Beam
  • Patent number: 10583104
    Abstract: Compositions and methods for therapeutic delivery are disclosed. More particularly, the present disclosure relates to nanoparticle compositions that sequester the activity of a target molecule while leaving other domains accessible to bind targeted tissues of interest. Methods for thrombus dissolution include administering a nanoparticle reversibly coupled to a target molecule that can dissolve a blood clot. Compositions and methods for inducing blood clotting are also disclosed. Methods for inducing blood clotting include administering a nanoparticle reversibly coupled to a target molecule that can induce the formation of a blood clot. Methods for sequestering a target molecule are also disclosed. The method includes reversibly coupling a target molecule to a nanoparticle having an affinity ligand that reversibly couples the target molecule, and thus, sequesters the target molecule activity until the target molecule interacts with its substrate resulting in the release of the target molecule.
    Type: Grant
    Filed: August 4, 2015
    Date of Patent: March 10, 2020
    Assignee: Indiana University Research and Technology Corporation
    Inventors: Jeffrey A. Kline, Nathan J. Alves, Daren M. Beam
  • Publication number: 20170189362
    Abstract: Compositions and methods for therapeutic delivery are disclosed. More particularly, the present disclosure relates to nanoparticle compositions that sequester the activity of a target molecule while leaving other domains accessible to bind targeted tissues of interest. Methods for thrombus dissolution include administering a nanoparticle reversibly coupled to a target molecule that can dissolve a blood clot. Compositions and methods for inducing blood clotting are also disclosed. Methods for inducing blood clotting include administering a nanoparticle reversibly coupled to a target molecule that can induce the formation of a blood clot. Methods for sequestering a target molecule are also disclosed. The method includes reversibly coupling a target molecule to a nanoparticle having an affinity ligand that reversibly couples the target molecule, and thus, sequesters the target molecule activity until the target molecule interacts with its substrate resulting in the release of the target molecule.
    Type: Application
    Filed: August 4, 2015
    Publication date: July 6, 2017
    Inventors: Jeffrey A. Kline, Nathan J. Alves, Daren M. Beam