Patents by Inventor Dariusz Smolen

Dariusz Smolen has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20180311407
    Abstract: The method of making an implant consists on coating of a supporting structure (1) with synthetic hydroxyapatite by immersing the supporting structure (1) in a suspension (3) and triggering of a cavitation in a portion of the suspension (3) being in contact with the supporting structure (1). The suspension (3) is formed by a liquid external phase, advantageously water, and internal phase, i.e. particles of synthetic hydroxyapatite having an average particle size not exceeding 100 nm and containing structural water in an amount from 2 to 6% by weight. The implant is coated with the above described hydroxyapatite subjected to cavitation and a thickness of 50 nm to 1000 nm, advantageously 50 nm to 300 nm.
    Type: Application
    Filed: May 5, 2016
    Publication date: November 1, 2018
    Inventors: WOJCIECH SWIESZKOWSKI, TADEUSZ CHUDOBA, SYLWIA KUSNIERUK, ALEKSANDRA KEDZIERSKA, BARTOSZ WOZNIAK, JULIA ROGOWSKA-TYLMAN, DARIUSZ SMOLEN, ELZBIETA PIETRZYKOWSKA, WITOLD LOJKOWSKI, JACEK WOJNAROWICZ, AHARON GEDANKEN, JANIS LOCS, VITA ZALITE, MARA PILMANE, ILZE SALMA
  • Publication number: 20150148911
    Abstract: To manufacture the implant a nanopowder of synthetic hydroxyapatite (Hap) is used having a hexagonal structure, average grain size in a range from 3 to 30 nm and the specific surface area greater than 200 m2/g. First the nanopowder is formed to the desired geometric shape, and then the shape is fixed. In the step of shape information the dried nanopowder is pressed in the mold under the pressure ranging from 50 Mpa to 2 GPa. In the step of fixing the pressed nanopowder at room temperature is subjected to the pressure rising from the ambient value to the peak value selected from a range of 1 to 8 GPa and to a temperature selected from a range of 100° C. to 600° C. for a period of time selected from a range from 30 seconds to 5 minutes. The density of thus produced implant, determined by helium method, is not less than 75% of the theoretical density.
    Type: Application
    Filed: June 27, 2013
    Publication date: May 28, 2015
    Applicant: INSTYTUT WYSOKICH CISNIEN POLSKIEJ AKADEMII NAUK
    Inventors: Witold Lojkowski, Tadeusz Chudoba, Elzbieta Pietrzykowska, Aleksandra Kedzierska, Dariusz Smolen, Wojciech Swieszkowski, Krzysztof Kurzydlowski