Patents by Inventor Darrell E. Ankney
Darrell E. Ankney has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Publication number: 20240239511Abstract: An apparatus and a method of determining a state of an actuator in an airplane. The apparatus includes a mirror coupled to the actuator, wherein a location of the mirror is dependent on the state of the actuator, a shaft for moving the mirror upon a change in the state of the actuator, and a processor. Incident light is reflected off of the mirror to create a reflected light. The processor receives the reflected light from the mirror, detects a change in a parameter of the reflected light generated by moving of the mirror, and determines the state of the actuator based on the change in the parameter.Type: ApplicationFiled: January 13, 2023Publication date: July 18, 2024Inventor: Darrell E. Ankney
-
Publication number: 20240166334Abstract: A control system performs a method of controlling a wing of an airplane. The control system includes an optical fiber, a bending device and a processor. The optical fiber is configured to receive light having an input optical phase. The bending device applies an external force on the optical fiber. The external force causes the light exiting the optical fiber to have an output optical phase. a processor determines a phase shift between the input optical phase and the output optical phase and controls the wing based on the phase shift.Type: ApplicationFiled: November 21, 2022Publication date: May 23, 2024Inventor: Darrell E. Ankney
-
Patent number: 11649039Abstract: Aerostructure actuator systems include first and second shaft portions having respective first and second mandrels and a clutch assembly arranged within the first mandrel and connecting the shaft portions. The clutch assembly includes a post with a post extension fixedly connected to the second mandrel. A first bearing is installed on the post extension to frictionally engage with a portion of the post. A second bearing is installed on the post. A spacer is arranged between the bearings and is fixedly attach to the first mandrel. A load setting nut is configured to engage with the post extension and apply a compressive force to the bearings and spacer against the post. The compressive force defines a coupling limit between the shaft portions. The clutch assembly is configured to rotationally decouple the shaft portions from each other if a relative rotational speed between the shaft portions exceeds the coupling limit.Type: GrantFiled: January 26, 2022Date of Patent: May 16, 2023Assignee: Hamilton Sundstrand CorporationInventors: Darrell E. Ankney, Jerold L. Blackmer
-
Patent number: 11614355Abstract: Disclosed is an actuator level detection system of an aircraft. The system includes an actuator containing fluid that defines a resistivity and including a first contact point and a second contact point. The system includes a first contactor disposed about the actuator cooperating with the first contact point to define a first contact resistance that includes the resistivity. The system includes sensor circuitry includes a conductive path defining a conductive path resistance, between the first contact point and the second contact point. The sensor circuitry has a total resistance that includes the first contact resistance and the conductive path resistance.Type: GrantFiled: July 12, 2019Date of Patent: March 28, 2023Assignee: HAMILTON SUNDSTRAND CORPORATIONInventor: Darrell E. Ankney
-
Patent number: 11388812Abstract: An electronic controller is provided and includes a printed wiring board (PWB) on which electronics are operably disposed, a power supply configured to supply power to the electronics, a heat sink and one or more thermal conductors anchored to the PWB to assume and move between first and second connection states in first and second thermal conditions, respectively. The first connection states are characterized in that the one or more thermal conductors are thermally attached to the PWB and the power supply and thermally disconnected from the heat sink. The second connection states are characterized in that the one or more thermal conductors are thermally attached to the PWB and the power supply and to the heat sink.Type: GrantFiled: December 22, 2020Date of Patent: July 12, 2022Assignee: HAMILTON SUNDSTRAND CORPORATIONInventors: Darrell E. Ankney, Nicholas Wlaznik
-
Publication number: 20220201840Abstract: An electronic controller is provided and includes a printed wiring board (PWB) on which electronics are operably disposed, a power supply configured to supply power to the electronics, a heat sink and one or more thermal conductors anchored to the PWB to assume and move between first and second connection states in first and second thermal conditions, respectively. The first connection states are characterized in that the one or more thermal conductors are thermally attached to the PWB and the power supply and thermally disconnected from the heat sink. The second connection states are characterized in that the one or more thermal conductors are thermally attached to the PWB and the power supply and to the heat sink.Type: ApplicationFiled: December 22, 2020Publication date: June 23, 2022Inventors: Darrell E. Ankney, Nicholas Wlaznik
-
Patent number: 11015665Abstract: A proportional braking system is provided for use with a movable surface which is movable relative to a housing. The proportional braking system includes a variable displacement brake which is configured for displacement toward or away from braking engagement with the movable surface in proportion to an input command and a brake driver which is receptive of data reflective of movements of the movable surface relative to the housing and which issues the input command to the variable displacement brake in accordance with the data.Type: GrantFiled: January 24, 2018Date of Patent: May 25, 2021Assignee: HAMILTON SUNSTRAND CORPORATIONInventors: Darrell E. Ankney, Nicholas Wlaznik
-
Publication number: 20210010844Abstract: Disclosed is an actuator level detection system of an aircraft. The system includes an actuator containing fluid that defines a resistivity and including a first contact point and a second contact point. The system includes a first contactor disposed about the actuator cooperating with the first contact point to define a first contact resistance that includes the resistivity. The system includes sensor circuitry includes a conductive path defining a conductive path resistance, between the first contact point and the second contact point. The sensor circuitry has a total resistance that includes the first contact resistance and the conductive path resistance.Type: ApplicationFiled: July 12, 2019Publication date: January 14, 2021Inventor: Darrell E. Ankney
-
Patent number: 10824830Abstract: A control surface disconnect detection system includes a mechanical disconnect detection device that includes: a first contact element; a second contact element; and a mechanical fuse that includes a conduction path. In a normal operational state the conduction path creates an electrical pathway between the first contact element and second contact element and when in a control surface disconnected state the conduction path does not create an electrical pathway between the first contact element and the second contact element. The system also includes a radio frequency identification (RFID) tag connected to the first contact element and the second contact element such that when the mechanical disconnect detection device is in the normal operation state the RFID tag does not transmit information, and when the mechanical disconnect detection device is in the control surface disconnected state the RFID tag does transmit information.Type: GrantFiled: June 5, 2018Date of Patent: November 3, 2020Assignee: HAMILTON SUNSTRAND CORPORATIONInventors: Darrell E. Ankney, Stephanie Gaspers
-
Publication number: 20200217721Abstract: An actuator system includes one or more mechanical elements and a temperature radio frequency identification (RFID) tag connected to at least one of the one or more mechanical elements. The temperature RFID tag includes an RFID tag connected to a temperature sensitive element that includes: a first contact; a second contact; and a conduction path between the first and second contacts. In a normal operational state the conduction path creates an electrical pathway between the first contact element and second contact element and when in an over-temperature state the conduction path does not create an electrical pathway between the first contact and the second contact. The RFID tag is connected to the first contact and the second contact such that when the temperature sensitive element is in the normal operation state the RFID tag does not transmit information does when the temperature sensitive element is in the over-temperature state.Type: ApplicationFiled: January 9, 2019Publication date: July 9, 2020Inventors: Darrell E. Ankney, Eugene W. Dolfi
-
Patent number: 10703462Abstract: A method for braking a motor in a high lift system of an aircraft, the high lift system comprising a central power drive unit for moving high lift surfaces arranged at a wing through providing rotational power by means of a transmission shaft to a plurality of drive stations operably coupled with the high lift surfaces; which power drive unit is operatively coupled to a controller and comprises at least one electric motor coupled therewith. The method includes determining a braking requirement for the at least one electric motor, measuring at least one of a current command to the motor and a current speed and direction of the at least one electric motor, based on the braking requirement, applying a braking command to the at least one electric motor, and reducing the braking command as the at least one electric motor comes to rest.Type: GrantFiled: August 25, 2017Date of Patent: July 7, 2020Assignee: HAMILTON SUNSTRAND CORPORATIONInventors: Erik Harrington, Victor Barger, Adam M. Finney, Timothy Michael Mayer, Yuniya S. Bishop, Adam Crandall, Darrell E. Ankney, Eugene W. Dolfi, Michael C. Harke, Christian Miller, Artemio Pérez
-
Patent number: 10549864Abstract: An over torque detection system includes a mechanical torque sensor and a radio frequency identification (RFID) tag. The mechanical torque sensor includes first and second contact elements and a moveable element coupled to the first contact element. In a normal operational state the moveable element is in contact with the second contact element and creates an electrical pathway between the first and second contact elements and when in over torque operational state the movable element moves such that it does not contact the second contact element. The RFID tag is connected to the first contact element and the second contact element such that when the mechanical torque sensor is in the normal operation state the RFID tag does not transmit information, and when the mechanical torque sensor is in the over torque operation state the RFID tag does transmit information.Type: GrantFiled: May 7, 2018Date of Patent: February 4, 2020Assignee: HAMILTON SUNDSTRAND CORPORATIONInventors: Darrell E. Ankney, Nicholas Wlaznik
-
Publication number: 20190370509Abstract: A control surface disconnect detection system includes a mechanical disconnect detection device that includes: a first contact element; a second contact element; and a mechanical fuse that includes a conduction path. In a normal operational state the conduction path creates an electrical pathway between the first contact element and second contact element and when in a control surface disconnected state the conduction path does not create an electrical pathway between the first contact element and the second contact element. The system also includes a radio frequency identification (RFID) tag connected to the first contact element and the second contact element such that when the mechanical disconnect detection device is in the normal operation state the RFID tag does not transmit information, and when the mechanical disconnect detection device is in the control surface disconnected state the RFID tag does transmit information.Type: ApplicationFiled: June 5, 2018Publication date: December 5, 2019Inventors: Darrell E. Ankney, Stephanie Gaspers
-
Publication number: 20190337635Abstract: An over torque detection system includes a mechanical torque sensor and a radio frequency identification (RFID) tag. The mechanical torque sensor includes first and second contact elements and a moveable element coupled to the first contact element. In a normal operational state the moveable element is in contact with the second contact element and creates an electrical pathway between the first and second contact elements and when in over torque operational state the movable element moves such that it does not contact the second contact element. The RFID tag is connected to the first contact element and the second contact element such that when the mechanical torque sensor is in the normal operation state the RFID tag does not transmit information, and when the mechanical torque sensor is in the over torque operation state the RFID tag does transmit information.Type: ApplicationFiled: May 7, 2018Publication date: November 7, 2019Inventors: Darrell E. Ankney, Nicholas Wlaznik
-
Publication number: 20190226536Abstract: A proportional braking system is provided for use with a movable surface which is movable relative to a housing. The proportional braking system includes a variable displacement brake which is configured for displacement toward or away from braking engagement with the movable surface in proportion to an input command and a brake driver which is receptive of data reflective of movements of the movable surface relative to the housing and which issues the input command to the variable displacement brake in accordance with the data.Type: ApplicationFiled: January 24, 2018Publication date: July 25, 2019Inventors: Darrell E. Ankney, Nicholas Wlaznik
-
Publication number: 20190226541Abstract: A proportional brake is provided and includes first and second bodies, a spring element, a coil and a booster coil. The first body includes brake plates and the second body includes thrust plates. The second body is disposed such that the thrust plates are interleaved with the brake plates and is rotatable and movable with respect to the first body. The spring element urges the second body to move toward the first body such that the thrust plates are urged toward braking engagements with the brake plates. The coil is provided at a first side of the brake plates and, when energized, generates a first flux moment on the second body in opposition to the spring element. The booster coil is provided at a second side of the brake plates and, when energized, generates a second flux moment on the second body in support of the spring element.Type: ApplicationFiled: January 24, 2018Publication date: July 25, 2019Inventors: Nicholas Wlaznik, Darrell E. Ankney
-
Patent number: 10359089Abstract: A proportional brake is provided and includes first and second bodies, a spring element, a coil and a booster coil. The first body includes brake plates and the second body includes thrust plates. The second body is disposed such that the thrust plates are interleaved with the brake plates and is rotatable and movable with respect to the first body. The spring element urges the second body to move toward the first body such that the thrust plates are urged toward braking engagements with the brake plates. The coil is provided at a first side of the brake plates and, when energized, generates a first flux moment on the second body in opposition to the spring element. The booster coil is provided at a second side of the brake plates and, when energized, generates a second flux moment on the second body in support of the spring element.Type: GrantFiled: January 24, 2018Date of Patent: July 23, 2019Assignee: HAMILTON SUNDSTRAND CORPORATIONInventors: Nicholas Wlaznik, Darrell E. Ankney
-
Patent number: 10288502Abstract: A torque tube sensor to measure torque on a torque tube or shaft includes: a sensor body including at least a first body section and a second body section; one or more strain gauges including a first strain gauge disposed in the first body section; at least one transmitter; and strain gauge circuitry connected to the first strain gauge and at least three other resistive elements in a Wheatstone bridge configuration including two arms, the transmitter being connected between the two arms. The sensor also includes at least one receiver configured to receive signals generated by the at least one transmitter; and an armature carried by the first body section that interacts with a permanent magnet stator, the armature being in electrical contact with the strain gauge circuitry and providing power to the strain gauge circuitry and the receiver. The sensor can be part of an assembly.Type: GrantFiled: February 2, 2018Date of Patent: May 14, 2019Assignee: HAMILTON SUNDSTRAND CORPORATIONInventors: Darrell E. Ankney, Jason Michael Kluga
-
Publication number: 20190061531Abstract: A method for braking a motor in a high lift system of an aircraft, the high lift system comprising a central power drive unit for moving high lift surfaces arranged at a wing through providing rotational power by means of a transmission shaft to a plurality of drive stations operably coupled with the high lift surfaces; which power drive unit is operatively coupled to a controller and comprises at least one electric motor coupled therewith. The method includes determining a braking requirement for the at least one electric motor, measuring at least one of a current command to the motor and a current speed and direction of the at least one electric motor, based on the braking requirement, applying a braking command to the at least one electric motor, and reducing the braking command as the at least one electric motor comes to rest.Type: ApplicationFiled: August 25, 2017Publication date: February 28, 2019Inventors: Erik Harrington, Victor Barger, Adam M. Finney, Timothy Michael Mayer, Yuniya S. Bishop, Adam Crandall, Darrell E. Ankney, Eugene W. Dolfi, Michael C. Harke, Christian Miller, Artemio Pérez
-
Patent number: 10216167Abstract: A system for positional monitoring of a slat flap lever control assembly including multiple radio frequency identification device (RFID) tags operatively coupled to a movable portion of the control assembly, the movable portion operatively coupled to a lever. Also included is a RFID reader operatively coupled to a stationary portion of the control assembly and in operative communication with the RFID tags. Further included is a processor operatively connected to the RFID reader. The processor is configured to transmit a carrier signal via the RFID reader to the RFID tags. The processor is also configured to receive, via the RFID reader, reflected signals from the RFID tags, each of the reflected signals comprising a different carrier frequency. The processor is further configured to determine, based on the reflected signal from the RFID tags, an angular position of the movable portion of the lever assembly relative to the stationary portion.Type: GrantFiled: September 28, 2017Date of Patent: February 26, 2019Assignee: HAMILTON SUNDSTRAND CORPORATIONInventor: Darrell E. Ankney