Patents by Inventor Darrell Glenn Senile

Darrell Glenn Senile has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11092023
    Abstract: A nozzle assembly is provided which is, in part, formed of a low coefficient of thermal expansion material. The assembly includes a nozzle fairing formed of the low coefficient of thermal expansion material and includes a metallic strut extending radially through the nozzle fairing. Load is transferred from the nozzle fairing to a static structure in either of two ways: first, the strut may receive the load directly and/or second, load may be transferred from the nozzle fairing to at least one of the inner and outer support rings. Further, the nozzle fairing and strut may allow for internal airflow for cooling.
    Type: Grant
    Filed: January 31, 2018
    Date of Patent: August 17, 2021
    Assignee: General Electric Company
    Inventors: Benjamin Scott Huizenga, Christopher Charles Glynn, Darrell Glenn Senile, Robert Alan Frederick, Michael Todd Radwanski, Michael Ray Tuertscher, Greg Scott Phelps
  • Patent number: 11078845
    Abstract: A gas turbine engine assembly includes first and second annular members having different first and second thermal expansion coefficients connected together with dual arm V brackets. Brackets include first and second arms angularly spaced apart from a bracket centerline and extending axially away from bracket bases attached to a first one of the first and second annular members. Arms are attached to a second one of the first and second annular members. A turbine frame includes struts extending between outer and inner rings. An annular mixer and centerbody substantially made from a ceramic matrix composite materials is connected to and supported by the outer and inner rings with first and second sets respectively of the dual arm V brackets. Bracket bases of the first and second sets are attached to the outer and inner rings respectively. Arms of the first and second sets are attached to mixer and centerbody respectively.
    Type: Grant
    Filed: September 6, 2018
    Date of Patent: August 3, 2021
    Assignee: General Electric Company
    Inventors: Michael Anthony Ruthemeyer, Darrell Glenn Senile, Bernard James Renggli, Randy Lee Lewis
  • Publication number: 20210063016
    Abstract: A combustor assembly for a gas turbine engine includes a dome having a forward surface and an inner surface. The forward surface and the inner surface of the dome at least partially define a slot. The combustor assembly also includes a liner at least partially defining a combustion chamber and extending between an aft end and a forward end. The forward end of the liner is positioned within the slot of the dome. The forward end of the liner includes an axial interface surface and a radial interface surface. The axial interface surface defines a radial gap with the inner surface of the dome and the radial interface surface defines an axial gap with the forward surface of the dome. At least one of the radial gap or the axial gap is less than about 0.150 inches during operating conditions of the combustor assembly to prevent an undesirable airflow.
    Type: Application
    Filed: October 16, 2019
    Publication date: March 4, 2021
    Inventors: Michael Alan Stieg, Darrell Glenn Senile, Gregory Scott Phelps, Jeffrey Douglas Johnson, Chad Holden Sutton, Robert Andrew Stowers
  • Patent number: 10927677
    Abstract: Airfoil assemblies for gas turbine engines are provided. For example, an airfoil assembly comprises an airfoil, an inner band defining an inner opening shaped complementary to an inner end of the airfoil, and an outer band defining an outer opening shaped complementary to an outer end of the airfoil. The airfoil inner end is received with the inner opening, and the airfoil outer end is received within the outer opening. A strut extends radially through an airfoil cavity. A first pad is defined at a first radial location within the cavity. A second pad is defined within the cavity at a second, different radial location. In some embodiments, the airfoil assembly inner band includes a first inner flange, through which the inner band is secured to a support structure, and the outer band includes a first outer flange, through which the outer band is secured to a support structure.
    Type: Grant
    Filed: March 15, 2018
    Date of Patent: February 23, 2021
    Assignee: General Electric Company
    Inventors: Darrell Glenn Senile, Matthew Mark Weaver, Alexander Martin Sener
  • Patent number: 10851672
    Abstract: A grommet assembly for mounting to a component of a turbine engine is provided. In one exemplary aspect, the grommet assembly includes a grommet that is removably mounted within a pass-through opening defined by the component. The component may be formed of a composite material. A locking member may be mounted to a body of the grommet. A flange projects from the body. When the grommet is mounted to the component and the locking member is mounted to the body, the body is received by the pass-through opening of the component and the locking member is mounted to the body such that the locking member and the flange clamp the component to secure the grommet to the component. An interface member, such as a pin, may be received by a hole defined by the grommet.
    Type: Grant
    Filed: September 4, 2018
    Date of Patent: December 1, 2020
    Assignee: General Electric Company
    Inventors: John Martin Jakomin, Darrell Glenn Senile
  • Publication number: 20200332666
    Abstract: Airfoils for gas turbine engines are provided. In one embodiment, an airfoil formed from a ceramic matrix composite material includes opposite pressure and suction sides extending radially along a span and defining an outer surface of the airfoil. The airfoil also includes opposite leading and trailing edges extending radially along the span. The pressure and suction sides extend axially between the leading and trailing edges. The leading edge defines a forward end of the airfoil, and the trailing edge defining an aft end of the airfoil. Further, the airfoil includes a trailing edge portion defined adjacent the trailing edge at the aft end of the airfoil; a plenum defined within the airfoil forward of the trailing edge portion; and a cooling passage defined within the trailing edge portion proximate the suction side. Methods for forming airfoils for gas turbine engines also are provided.
    Type: Application
    Filed: December 2, 2019
    Publication date: October 22, 2020
    Inventors: Kirk Douglas Gallier, Darrell Glenn Senile, John Calhoun
  • Patent number: 10800128
    Abstract: Composite components having a T or L-shaped configuration that include features that reduce void defects between abutting laminate portions and provide improved mechanical properties are provided. Methods for forming such components are also provided. In one exemplary aspect, a composite component defines a first direction and a second direction and includes a wedged-shaped noodle at a joint interface between an abutting first laminate portion extending along the first direction and a second laminate portion extending along the second direction. The noodle has a first surface that is angled with respect to the second direction. At least one of the plies of the second laminate portion terminate and attach to the angled first surface of the noodle.
    Type: Grant
    Filed: January 24, 2018
    Date of Patent: October 13, 2020
    Assignee: General Electric Company
    Inventors: Brian Gregg Feie, Darrell Glenn Senile, Gregory Scott Phelps, Thomas Samuel Holaday
  • Patent number: 10605095
    Abstract: Airfoils for gas turbine engines are provided. In one embodiment, an airfoil formed from a ceramic matrix composite material includes opposite pressure and suction sides extending radially along a span and defining an outer surface of the airfoil. The airfoil also includes opposite leading and trailing edges extending radially along the span. The pressure and suction sides extend axially between the leading and trailing edges. The leading edge defines a forward end of the airfoil, and the trailing edge defining an aft end of the airfoil. Further, the airfoil includes a trailing edge portion defined adjacent the trailing edge at the aft end of the airfoil; a plenum defined within the airfoil forward of the trailing edge portion; and a cooling passage defined within the trailing edge portion proximate the suction side. Methods for forming airfoils for gas turbine engines also are provided.
    Type: Grant
    Filed: May 11, 2016
    Date of Patent: March 31, 2020
    Assignee: General Electric Company
    Inventors: Kirk Douglas Gallier, Darrell Glenn Senile, John Calhoun
  • Publication number: 20200088051
    Abstract: A nozzle assembly is provided which is, in part, formed of a low coefficient of thermal expansion material. The assembly includes a nozzle fairing formed of the low coefficient of thermal expansion material and includes a metallic strut extending radially through the nozzle fairing. Load is transferred from the nozzle fairing to a static structure in either of two ways: first, the strut may receive the load directly and/or second, load may be transferred from the nozzle fairing to at least one of the inner and outer support rings. Further, the nozzle fairing and strut may allow for internal airflow for cooling.
    Type: Application
    Filed: January 31, 2018
    Publication date: March 19, 2020
    Inventors: Benjamin Scott Huizenga, Christopher Charles Glynn, Darrell Glenn Senile, Robert Alan Frederick, Michael Todd Radwanski, Michael Ray Tuertscher, Greg Scott Phelps
  • Publication number: 20200072082
    Abstract: A grommet assembly for mounting to a component of a turbine engine is provided. In one exemplary aspect, the grommet assembly includes a grommet that is removably mounted within a pass-through opening defined by the component. The component may be formed of a composite material. A locking member may be mounted to a body of the grommet. A flange projects from the body. When the grommet is mounted to the component and the locking member is mounted to the body, the body is received by the pass-through opening of the component and the locking member is mounted to the body such that the locking member and the flange clamp the component to secure the grommet to the component. An interface member, such as a pin, may be received by a hole defined by the grommet.
    Type: Application
    Filed: September 4, 2018
    Publication date: March 5, 2020
    Inventors: John Martin Jakomin, Darrell Glenn Senile
  • Publication number: 20200040749
    Abstract: Fairing assemblies and methods for assembling gas turbine engine fairing assemblies are provided. For example, a fairing assembly comprises a plurality of fairings, an annular inner band defining a plurality of inner pockets, and an annular outer band defining a plurality of outer pockets. Each fairing has an inner end radially spaced apart from an outer end. Each inner pocket is shaped complementary to each fairing inner end and has forward and aft ends. Each outer pocket is shaped complementary to each fairing outer end and has forward and aft ends. The inner and outer bands are each a single piece structure. Each fairing inner end is received within one of the plurality of inner pockets, and each fairing outer end is received within one of the plurality of outer pockets. Some embodiments also comprise an inner ring positioned against the inner band to close the inner pockets.
    Type: Application
    Filed: August 6, 2018
    Publication date: February 6, 2020
    Inventors: Mark Anthony Holleran, Matthew Mark Weaver, Darrell Glenn Senile, Nicholas John Bloom
  • Publication number: 20200025087
    Abstract: A gas turbine engine assembly includes first and second annular members having different first and second thermal expansion coefficients connected together with dual arm V brackets. Brackets include first and second arms angularly spaced apart from a bracket centerline and extending axially away from bracket bases attached to a first one of the first and second annular members. Arms are attached to a second one of the first and second annular members. A turbine frame includes struts extending between outer and inner rings. An annular mixer and centerbody substantially made from a ceramic matrix composite materials is connected to and supported by the outer and inner rings with first and second sets respectively of the dual arm V brackets. Bracket bases of the first and second sets are attached to the outer and inner rings respectively. Arms of the first and second sets are attached to mixer and centerbody respectively.
    Type: Application
    Filed: September 6, 2018
    Publication date: January 23, 2020
    Inventors: Michael Anthony RUTHEMEYER, Darrell Glenn SENILE, Bernard James RENGGLI, Randy Lee LEWIS
  • Publication number: 20200024999
    Abstract: Flow path assemblies of gas turbine engines are provided. For example, a flow path assembly comprises an inner wall and a unitary outer wall that includes a combustor portion extending through a combustion section of the gas turbine engine and a turbine portion extending through at least a first turbine stage of a turbine section of the gas turbine engine. The combustor portion and the turbine portion are integrally formed as a single unitary structure. The flow path assembly further comprises a plurality of nozzle airfoils, each nozzle airfoil having an inner end radially opposite an outer end. The inner wall or the unitary outer wall defines a plurality of openings therethrough, and each opening is configured for receipt of one of the plurality of nozzle airfoils. Methods of assembling flow path assemblies also are provided.
    Type: Application
    Filed: April 22, 2019
    Publication date: January 23, 2020
    Inventors: Brandon ALIanson Reynolds, Jonathan David Baldiga, Darrell Glenn Senile, Daniel Patrick Kerns, Michael Ray Tuertscher
  • Publication number: 20190322004
    Abstract: Tooling assemblies and methods for using a tooling assembly to shape an article are provided. For example, a tooling assembly has a forward end and an aft end and comprises a first tool segment, a second tool segment, a forward cam portion near the forward end, and an aft cam portion near the aft end. The forward cam portion defines a follower surface, and at least a portion of the follower surface has a curvilinear profile. The aft cam portion defines a first surface extending at a first angle and a second surface extending at a second angle. The first and second tool segments define a cavity for shaping an article. An exemplary method comprises positioning an article preform within the cavity and inserting a fastener within the aft end of the tooling assembly until the fastener is fully inserted within the tooling assembly.
    Type: Application
    Filed: April 19, 2018
    Publication date: October 24, 2019
    Inventors: Joel Primmer White, Darrell Glenn Senile, Thomas Samuel Holaday
  • Publication number: 20190284938
    Abstract: Airfoil assemblies for gas turbine engines are provided. For example, an airfoil assembly comprises an airfoil, an inner band defining an inner opening shaped complementary to an inner end of the airfoil, and an outer band defining an outer opening shaped complementary to an outer end of the airfoil. The airfoil inner end is received with the inner opening, and the airfoil outer end is received within the outer opening. A strut extends radially through an airfoil cavity. A first pad is defined at a first radial location within the cavity. A second pad is defined within the cavity at a second, different radial location. In some embodiments, the airfoil assembly inner band includes a first inner flange, through which the inner band is secured to a support structure, and the outer band includes a first outer flange, through which the outer band is secured to a support structure.
    Type: Application
    Filed: March 15, 2018
    Publication date: September 19, 2019
    Inventors: Darrell Glenn Senile, Matthew Mark Weaver, Alexander Martin Sener
  • Patent number: 10401030
    Abstract: Components and methods for forming components are provided. For example, a method for forming a component includes laying up a plurality of plies to form a component preform that defines an axis of symmetry and a circumferential direction. Laying up the plurality of plies includes overlapping ends of the plurality of plies to define overlap regions and offsetting the overlap regions along the circumferential direction such that any radial line drawn from the axis of symmetry through the plies passes through only one overlap region. In another embodiment, a component includes a body that is symmetric about an axis of symmetry and that defines a circumferential direction and a radial direction. The body is formed from a plurality of plies and has a substantially uniform thickness. Ends of the plurality of plies are overlapped to define a plurality of overlap regions, which are offset along the circumferential direction.
    Type: Grant
    Filed: July 12, 2016
    Date of Patent: September 3, 2019
    Assignee: General Electric Company
    Inventors: Michael Alan Stieg, Brian Christopher Towle, Darrell Glenn Senile, Gregory Scott Phelps, Jeffrey Douglas Johnson
  • Patent number: 10385709
    Abstract: Flow path assemblies having features for positioning the assemblies within a gas turbine engine are provided. For example, a flow path assembly comprises an inner wall and a unitary outer wall that includes an integral combustion portion and turbine portion, the combustor portion extending through a combustion section of the gas turbine engine and the turbine portion extending through at least a first turbine stage of a turbine section of the gas turbine engine. The flow path assembly further comprises at least two positioning members for radially centering the flow path assembly within the gas turbine engine. The positioning members extend to the flow path assembly from one or more structures external to the flow path assembly, constrain the flow path assembly tangentially, and allow radial and axial movement of the flow path assembly. Other embodiments for positioning flow path assemblies also are provided.
    Type: Grant
    Filed: February 23, 2017
    Date of Patent: August 20, 2019
    Assignee: General Electric Company
    Inventors: Brandon Allanson Reynolds, Jonathan David Baldiga, Darrell Glenn Senile, Daniel Patrick Kerns, Michael Ray Tuertscher, Aaron Michael Dziech, Brett Joseph Geiser
  • Publication number: 20190249556
    Abstract: Flow path assemblies having features for positioning the assemblies within a gas turbine engine are provided. For example, a flow path assembly comprises an inner wall and a unitary outer wall that includes an integral combustion portion and turbine portion, the combustor portion extending through a combustion section of the gas turbine engine and the turbine portion extending through at least a first turbine stage of a turbine section of the gas turbine engine. The flow path assembly further comprises at least two positioning members for radially centering the flow path assembly within the gas turbine engine. The positioning members extend to the flow path assembly from one or more structures external to the flow path assembly, constrain the flow path assembly tangentially, and allow radial and axial movement of the flow path assembly. Other embodiments for positioning flow path assemblies also are provided.
    Type: Application
    Filed: April 23, 2019
    Publication date: August 15, 2019
    Inventors: Brandon ALlanson Reynolds, Jonathan David Baldiga, Darrell Glenn Senile, Daniel Patrick Kerns, Michael Ray Tuertscher, Aaron Michael Dziech, Brett Joseph Geiser
  • Patent number: 10378373
    Abstract: Flow path assemblies of gas turbine engines are provided. For example, a flow path assembly comprises an inner wall and a unitary outer wall that includes a combustor portion extending through a combustion section of the gas turbine engine and a turbine portion extending through at least a first turbine stage of a turbine section of the gas turbine engine. The combustor portion and the turbine portion are integrally formed as a single unitary structure. The flow path assembly further comprises a plurality of nozzle airfoils, each nozzle airfoil having an inner end radially opposite an outer end. The inner wall or the unitary outer wall defines a plurality of openings therethrough, and each opening is configured for receipt of one of the plurality of nozzle airfoils. Methods of assembling flow path assemblies also are provided.
    Type: Grant
    Filed: February 23, 2017
    Date of Patent: August 13, 2019
    Assignee: General Electric Company
    Inventors: Brandon ALlanson Reynolds, Jonathan David Baldiga, Darrell Glenn Senile, Daniel Patrick Kerns, Michael Ray Tuertscher
  • Patent number: 10370986
    Abstract: Nozzles and nozzle assemblies for gas turbine engines are provided. A nozzle includes an airfoil having an exterior surface defining a pressure side and a suction side extending between a leading edge and a trailing edge, an outer band disposed radially outward of the airfoil, the outer band including a radially outwardly-facing end surface, and an inner band disposed radially inward of the airfoil, the inner band including a radially inwardly-facing end surface. The nozzle further includes a flange extending radially from one of the radially outwardly-facing end surface or the radially inwardly-facing end surface. The flange is formed from a ceramic matrix composite material and includes a plurality of ceramic matrix composite plies stacked together and generally having an L-shape in a circumferential cross-sectional view.
    Type: Grant
    Filed: July 24, 2015
    Date of Patent: August 6, 2019
    Assignee: General Electric Company
    Inventors: Bryce Loring Heitman, Gregory Scott Phelps, Darrell Glenn Senile