Patents by Inventor Darren Janzig
Darren Janzig has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Patent number: 12004982Abstract: Devices, systems, and methods for crimping a medical device are disclosed. More specifically, the present disclosure relates to devices, systems, and methods for reducing the diameter of a collapsible heart valve prosthesis to be loaded onto a delivery device. The devices, systems, and methods using at least one funnel to crimp the heart valve prosthesis and load it onto the delivery system.Type: GrantFiled: November 4, 2022Date of Patent: June 11, 2024Assignee: MEDTRONIC VASCULAR GALWAYInventors: Niall Duffy, Marian Lally, Philip Haarstad, Frank Harewood, Igor Kovalsky, Jason Quill, Daniel Gelfman, Ana Menk, Darren Janzig, Shyam Gokaldas, Kenneth Dale Warnock, Jr.
-
Patent number: 11666767Abstract: A method of forming a medical device lead connection element is described. The method includes positioning an end portion of a lead filar to overlap a lead end connection element such that the positioning creates mutual interference between the lead filar and the lead end connection element, and forming an interference configuration. Then melting the end portion of the lead filar to form a weld joint and allowint the end portion of the lead filar to move towards the end connection element.Type: GrantFiled: April 13, 2017Date of Patent: June 6, 2023Assignee: Medtronic, Inc.Inventors: Darren Janzig, Robert J. Davies, Seth M. Humphrys, Richard T. Stone
-
Publication number: 20230109958Abstract: Devices, systems, and methods for crimping a medical device are disclosed. More specifically, the present disclosure relates to devices, systems, and methods for reducing the diameter of a collapsible heart valve prosthesis to be loaded onto a delivery device. The devices, systems, and methods using at least one funnel to crimp the heart valve prosthesis and load it onto the delivery system.Type: ApplicationFiled: November 4, 2022Publication date: April 13, 2023Inventors: Niall DUFFY, Marian LALLY, Philip HAARSTAD, Frank HAREWOOD, Igor KOVALSKY, Jason QUILL, Daniel GELFMAN, Ana MENK, Darren JANZIG, Shyam GOKALDAS, Kenneth Dale WARNOCK, JR.
-
Patent number: 11588213Abstract: Implantable medical devices that include a battery to power circuitry utilize a battery connector to electrically interconnect the battery to the circuitry. The battery connector may be mounted directly to a device housing to have the battery connector a fixed position within the device. Battery terminals of the battery are electrically connected to terminals on the battery connector, and the terminals on the battery connector are electrically connected to power terminals of the circuitry. The battery connector may include various features such as mounting grooves formed in a connector body, tapered pins to connect to power terminals on a circuit board, as well as plates to engage the battery terminals. The device housing may provide mounting features that allow the battery connector to be affixed directly to the device housing.Type: GrantFiled: May 3, 2021Date of Patent: February 21, 2023Assignee: MEDTRONIC, INC.Inventors: Steven Deininger, Jeffrey Clayton, Randy Roles, Darren Janzig, Paul Eichstaedt
-
Patent number: 11491036Abstract: Devices, systems, and methods for crimping a medical device are disclosed. More specifically, the present disclosure relates to devices, systems, and methods for reducing the diameter of a collapsible heart valve prosthesis to be loaded onto a delivery device. The devices, systems, and methods using at least one funnel to crimp the heart valve prosthesis and load it onto the delivery system.Type: GrantFiled: April 9, 2021Date of Patent: November 8, 2022Assignee: MEDTRONIC VASCULAR GALWAYInventors: Niall Duffy, Marian Lally, Philip Haarstad, Frank Harewood, Igor Kovalsky, Jason Quill, Daniel Gelfman, Ana Menk, Darren Janzig, Shyam Gokaldas, Kenneth Dale Warnock, Jr.
-
Publication number: 20210290375Abstract: Devices, systems, and methods for crimping a medical device are disclosed. More specifically, the present disclosure relates to devices, systems, and methods for reducing the diameter of a collapsible heart valve prosthesis to be loaded onto a delivery device. The devices, systems, and methods using at least one funnel to crimp the heart valve prosthesis and load it onto the delivery system.Type: ApplicationFiled: April 9, 2021Publication date: September 23, 2021Inventors: Niall DUFFY, Marian LALLY, Philip HAARSTAD, Frank HAREWOOD, Igor KOVALSKY, Jason QUILL, Daniel GELFMAN, Ana MENK, Darren JANZIG, Shyam GOKALDAS, Kenneth Dale WARNOCK, JR.
-
Patent number: 11110284Abstract: A medical device lead connection assembly includes an end connector element including a plurality of fixed connection element tabs extending from the end connector element to a tab distal end. A lead body includes a plurality of lead filars extending through the lead body and coupled to a corresponding fixed connection tab. A tubular guide hub extends from a hub proximal end to a hub distal end. The tubular guide hub includes a plurality of guide elements circumferentially disposed about an outer surface of the guide hub. The hub distal end is disposed within the lead body and the hub proximal end received within connection element tabs, and selected guide elements contact selected lead filars.Type: GrantFiled: April 13, 2017Date of Patent: September 7, 2021Assignee: Medtronic, Inc.Inventors: Darren Janzig, Robert J. Davies, Seth M. Humphrys, Richard T. Stone
-
Publication number: 20210257703Abstract: Implantable medical devices that include a battery to power circuitry utilize a battery connector to electrically interconnect the battery to the circuitry. The battery connector may be mounted directly to a device housing to have the battery connector a fixed position within the device. Battery terminals of the battery are electrically connected to terminals on the battery connector, and the terminals on the battery connector are electrically connected to power terminals of the circuitry. The battery connector may include various features such as mounting grooves formed in a connector body, tapered pins to connect to power terminals on a circuit board, as well as plates to engage the battery terminals. The device housing may provide mounting features that allow the battery connector to be affixed directly to the device housing.Type: ApplicationFiled: May 3, 2021Publication date: August 19, 2021Inventors: Steven Deininger, Jeffrey Clayton, Randy Roles, Darren Janzig, Paul Eichstaedt
-
Patent number: 11011801Abstract: Implantable medical devices that include a battery to power circuitry utilize a battery connector to electrically interconnect the battery to the circuitry. The battery connector may be mounted directly to a device housing to have the battery connector a fixed position within the device. Battery terminals of the battery are electrically connected to terminals on the battery connector, and the terminals on the battery connector are electrically connected to power terminals of the circuitry. The battery connector may include various features such as mounting grooves formed in a connector body, tapered pins to connect to power terminals on a circuit board, as well as plates to engage the battery terminals. The device housing may provide mounting features that allow the battery connector to be affixed directly to the device housing.Type: GrantFiled: February 11, 2019Date of Patent: May 18, 2021Assignee: MEDTRONIC, INC.Inventors: Steven Deininger, Jeffrey Clayton, Randy Roles, Darren Janzig, Paul Eichstaedt
-
Patent number: 10973635Abstract: Devices, systems, and methods for crimping a medical device are disclosed. More specifically, the present disclosure relates to devices, systems, and methods for reducing the diameter of a collapsible heart valve prosthesis to be loaded onto a delivery device. The devices, systems, and methods using at least one funnel to crimp the heart valve prosthesis and load it onto the delivery system.Type: GrantFiled: January 8, 2019Date of Patent: April 13, 2021Assignee: MEDTRONIC VASCULAR GALWAYInventors: Niall Duffy, Marian Lally, Philip Haarstad, Frank Harewood, Igor Kovalsky, Jason Quill, Daniel Gelfman, Ana Menk, Darren Janzig, Shyam Gokaldas, Kenneth Dale Warnock, Jr.
-
Patent number: 10953233Abstract: A medical device lead assembly includes an end connector element having a plurality of fixed connection element tabs each respectively extending from the end connector element to a tab distal end, and a lead body having a plurality of lead filars extending through the lead body and forming a filar coil. Each of the plurality of lead filars is coupled to a corresponding fixed connection tab. Each of the plurality of lead filars have a diameter of less than 150 micrometers or less than 125 micrometers, or from 50 to 125 micrometers or from 50 to 100 micrometers. The filar coil having an outer diameter value being less than 1.5 mm and a first pitch within the lead body and a second pitch adjacent to the end connector element and the second pitch is greater than the first pitch.Type: GrantFiled: April 13, 2017Date of Patent: March 23, 2021Assignee: Medtronic, Inc.Inventors: Darren Janzig, Robert J. Davies, Seth M. Humphrys, Richard T. Stone
-
Publication number: 20200259151Abstract: Implantable medical devices that include a battery to power circuitry utilize a battery connector to electrically interconnect the battery to the circuitry. The battery connector may be mounted directly to a device housing to have the battery connector a fixed position within the device. Battery terminals of the battery are electrically connected to terminals on the battery connector, and the terminals on the battery connector are electrically connected to power terminals of the circuitry. The battery connector may include various features such as mounting grooves formed in a connector body, tapered pins to connect to power terminals on a circuit board, as well as plates to engage the battery terminals. The device housing may provide mounting features that allow the battery connector to be affixed directly to the device housing.Type: ApplicationFiled: February 11, 2019Publication date: August 13, 2020Inventors: Steven Deininger, Jeffrey Clayton, Randy Roles, Darren Janzig, Paul Eichstaedt
-
Publication number: 20190151665Abstract: A medical device lead assembly includes an end connector element having a plurality of fixed connection element tabs each respectively extending from the end connector element to a tab distal end, and a lead body having a plurality of lead filars extending through the lead body and forming a filar coil. Each of the plurality of lead filars is coupled to a corresponding fixed connection tab. Each of the plurality of lead filars have a diameter of less than 150 micrometers or less than 125 micrometers, or from 50 to 125 micrometers or from 50 to 100 micrometers. The filar coil having an outer diameter value being less than 1.5 mm and a first pitch within the lead body and a second pitch adjacent to the end connector element and the second pitch is greater than the first pitch.Type: ApplicationFiled: April 13, 2017Publication date: May 23, 2019Inventors: Darren JANZIG, Robert J. DAVIES, Seth M. HUMPHRYS, Richard T. STONE
-
Publication number: 20190151664Abstract: A medical device lead connection assembly includes an end connector element including a plurality of fixed connection element tabs extending from the end connector element to a tab distal end. A lead body includes a plurality of lead filars extending through the lead body and coupled to a corresponding fixed connection tab. A tubular guide hub extends from a hub proximal end to a hub distal end. The tubular guide hub includes a plurality of guide elements circumferentially disposed about an outer surface of the guide hub. The hub distal end is disposed within the lead body and the hub proximal end received within connection element tabs, and selected guide elements contact selected lead filars.Type: ApplicationFiled: April 13, 2017Publication date: May 23, 2019Inventors: Darren JANZIG, Robert J. DAVIES, Seth M. HUMPHRYS, Richard T. STONE
-
Publication number: 20190133758Abstract: Devices, systems, and methods for crimping a medical device are disclosed. More specifically, the present disclosure relates to devices, systems, and methods for reducing the diameter of a collapsible heart valve prosthesis to be loaded onto a delivery device. The devices, systems, and methods using at least one funnel to crimp the heart valve prosthesis and load it onto the delivery system.Type: ApplicationFiled: January 8, 2019Publication date: May 9, 2019Inventors: Niall DUFFY, Marian LALLY, Philip HAARSTAD, Frank HAREWOOD, Igor KOVALSKY, Jason QUILL, Daniel GELFMAN, Ana MENK, Darren JANZIG, Shyam GOKALDAS, Kenneth WARNOCK
-
Publication number: 20190117982Abstract: A method of forming a medical device lead connection element is described. The method includes positioning an end portion of a lead filar to overlap a lead end connection element such that the positioning creates mutual interference between the lead filar and the lead end connection element, and forming an interference configuration. Then melting the end portion of the lead filar to form a weld joint and allowint the end portion of the lead filar to move towards the end connection element.Type: ApplicationFiled: April 13, 2017Publication date: April 25, 2019Inventors: Darren JANZIG, Robert J. DAVIES, Seth M. HUMPHRYS, Richard T. STONE
-
Patent number: 10188515Abstract: Devices, systems, and methods for crimping a medical device are disclosed. More specifically, the present disclosure relates to devices, systems, and methods for reducing the diameter of a collapsible heart valve prosthesis to be loaded onto a delivery device. The devices, systems, and methods using at least one funnel to crimp the heart valve prosthesis and load it onto the delivery system.Type: GrantFiled: May 8, 2014Date of Patent: January 29, 2019Assignee: MEDTRONIC VASCULAR INC.Inventors: Niall Duffy, Marian Creaven, Philip Haarstad, Frank Harewood, Igor Kovalsky, Jason Quill, Daniel Gelfman, Ana Menk, Darren Janzig, Shyam Gokaldas, Kenneth Warnock
-
Publication number: 20150080995Abstract: A medical lead may be fabricated using an electrode fixture ((130A)-(130D)) configured to facilitate circumferential and axial alignment between electrodes of the lead. In one example, a method includes positioning an electrode fixture around at least one conductor of a plurality of conductors (122) for a medical lead, wherein the electrode fixture at least partially retains an electrode assembly. The method also includes electrically coupling a portion of the at least one conductor with at least a portion of the electrode assembly at an attachment area defined by the electrode assembly when the electrode assembly is at least partially retained by the electrode fixture.Type: ApplicationFiled: March 15, 2013Publication date: March 19, 2015Applicant: Medtronic, Inc.Inventors: Dale Seeley, Evan Gustafson, Michael Hegland, Seth Humphrys, Darren Janzig, Gerald Lindner
-
Publication number: 20140331475Abstract: Devices, systems, and methods for crimping a medical device are disclosed. More specifically, the present disclosure relates to devices, systems, and methods for reducing the diameter of a collapsible heart valve prosthesis to be loaded onto a delivery device. The devices, systems, and methods using at least one funnel to crimp the heart valve prosthesis and load it onto the delivery system.Type: ApplicationFiled: May 8, 2014Publication date: November 13, 2014Applicant: Medtronic Vascular GalwayInventors: Niall Duffy, Marian Creaven, Philip Haarstad, Frank Harewood, Igor Kovalsky, Jason Quill, Daniel Gelfman, Ana Menk, Darren Janzig, Shyam Gokaldas, Kenneth Warnock
-
Publication number: 20070185539Abstract: A modular implantable medical device permits implantable medical devices to have a smaller profile in order to better fit into locations within the human body. A modular implantable medical device separates various functional components of the implantable medical device into a set of interconnected modules. This distributed architecture of a modular implantable medical device may permit the device footprint to be distributed over a larger area while making the profile smaller, and may permit the overall shape of the implantable medical device to better match the body location into which it is to be implanted. An overmold integrates the modules of a modular implantable medical device into a single structure. In some embodiments the overmold is flexible and provides a biocompatible interface from the component modules and the patient, while restraining potentially harmful intermodule motion.Type: ApplicationFiled: April 16, 2007Publication date: August 9, 2007Applicant: Medtronic, Inc.Inventors: Ruchika Singhal, Darren Janzig, Carl Wahlstrand, Robert Skime, Paulette Olson