Patents by Inventor Darren P. Fong

Darren P. Fong has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9669396
    Abstract: This invention is directed to hydrocracking catalysts and hydrocracking processes employing a magnesium aluminosilicate clay and a zeolite. The magnesium aluminosilicate clay has a characteristic 29Si NMR spectrum. The magnesium aluminosilicate clay is the product of a series of specific reaction steps. The resulting magnesium aluminosilicate clay combines high surface area and activity for use in hydrocracking catalysts and processes.
    Type: Grant
    Filed: November 4, 2013
    Date of Patent: June 6, 2017
    Assignee: Chevron U.S.A. Inc.
    Inventors: Theodorus Maesen, Alexander E. Kuperman, Darren P. Fong
  • Publication number: 20140057775
    Abstract: This invention is directed to hydrocracking catalysts and hydrocracking processes employing a magnesium aluminosilicate clay and a zeolite. The magnesium aluminosilicate clay has a characteristic 29Si NMR spectrum. The magnesium aluminosilicate clay is the product of a series of specific reaction steps. The resulting magnesium aluminosilicate clay combines high surface area and activity for use in hydrocracking catalysts and processes.
    Type: Application
    Filed: November 4, 2013
    Publication date: February 27, 2014
    Applicant: CHEVRON U.S.A. INC.
    Inventors: Theodorus Maesen, Alexander E. Kuperman, Darren P. Fong
  • Patent number: 8603932
    Abstract: This invention is directed to hydrocracking catalysts and hydrocracking processes employing a magnesium aluminosilicate clay. The magnesium aluminosilicate clay has a characteristic 29Si NMR spectrum. The magnesium aluminosilicate clay is the product of a series of specific reaction steps. Briefly, the magnesium aluminosilicate clay employed in the catalyst and process of the present invention is made by combining a silicon component, an aluminum component, and a magnesium component, under aqueous conditions and at an acidic pH, to form a first reaction mixture and subsequently the pH of the first reaction mixture is adjusted to greater than about 7.5 to form a second reaction mixture. The second reaction mixture is allowed to react under conditions sufficient to form the magnesium aluminosilicate clay. The resulting magnesium aluminosilicate clay combines high surface area and activity for use in hydrocracking catalysts and processes.
    Type: Grant
    Filed: January 5, 2012
    Date of Patent: December 10, 2013
    Assignee: Chevron U.S.A. Inc.
    Inventors: Theodorus Maesen, Alexander E. Kuperman, Darren P. Fong
  • Patent number: 8518239
    Abstract: This invention is directed to hydrocracking catalysts and hydrocracking processes employing a magnesium aluminosilicate clay. The magnesium aluminosilicate clay has a characteristic 29Si NMR spectrum. The magnesium aluminosilicate clay is the product of a series of specific reaction steps. Briefly, the magnesium aluminosilicate clay employed in the catalyst and process of the present invention is made by combining a silicon component, an aluminum component, and a magnesium component, under aqueous conditions and at an acidic pH, to form a first reaction mixture and subsequently the pH of the first reaction mixture is adjusted to greater than about 7.5 to form a second reaction mixture. The second reaction mixture is allowed to react under conditions sufficient to form the magnesium aluminosilicate clay. The resulting magnesium aluminosilicate clay combines high surface area and activity for use in hydrocracking catalysts and processes.
    Type: Grant
    Filed: October 3, 2008
    Date of Patent: August 27, 2013
    Assignee: Chevron U.S.A. Inc.
    Inventors: Theodorus Maesen, Alexander E. Kuperman, Darren P. Fong
  • Publication number: 20120122661
    Abstract: This invention is directed to hydrocracking catalysts and hydrocracking processes employing a magnesium aluminosilicate clay. The magnesium aluminosilicate clay has a characteristic 29Si NMR spectrum. The magnesium aluminosilicate clay is the product of a series of specific reaction steps. Briefly, the magnesium aluminosilicate clay employed in the catalyst and process of the present invention is made by combining a silicon component, an aluminum component, and a magnesium component, under aqueous conditions and at an acidic pH, to form a first reaction mixture and subsequently the pH of the first reaction mixture is adjusted to greater than about 7.5 to form a second reaction mixture. The second reaction mixture is allowed to react under conditions sufficient to form the magnesium aluminosilicate clay. The resulting magnesium aluminosilicate clay combines high surface area and activity for use in hydrocracking catalysts and processes.
    Type: Application
    Filed: January 5, 2012
    Publication date: May 17, 2012
    Inventors: Theodorus Maesen, Alexander E. Kuperman, Darren P. Fong
  • Publication number: 20100084312
    Abstract: This invention is directed to hydrocracking catalysts and hydrocracking processes employing a magnesium aluminosilicate clay. The magnesium aluminosilicate clay has a characteristic 29Si NMR spectrum. The magnesium aluminosilicate clay is the product of a series of specific reaction steps. Briefly, the magnesium aluminosilicate clay employed in the catalyst and process of the present invention is made by combining a silicon component, an aluminum component, and a magnesium component, under aqueous conditions and at an acidic pH, to form a first reaction mixture and subsequently the pH of the first reaction mixture is adjusted to greater than about 7.5 to form a second reaction mixture. The second reaction mixture is allowed to react under conditions sufficient to form the magnesium aluminosilicate clay. The resulting magnesium aluminosilicate clay combines high surface area and activity for use in hydrocracking catalysts and processes.
    Type: Application
    Filed: October 3, 2008
    Publication date: April 8, 2010
    Inventors: Theodorus Maesen, Alexander E. Kuperman, Darren P. Fong
  • Publication number: 20090163353
    Abstract: The invention is directed to an isomerization catalyst containing an intermediate pore size molecular sieve, a metal or metals selected from the group consisting of Ca, Cr, Mg, La, Ba, Pr, Sr, K and Nd which are effective in raising the isomerization selectivity, and additionally loaded with a Group VIII metal or metals for hydrogenation purposes.
    Type: Application
    Filed: February 25, 2009
    Publication date: June 25, 2009
    Inventors: Joseph A. Biscardi, Darren P. Fong, Paul Marcantonio
  • Patent number: 7390394
    Abstract: The invention is directed to a method of making a catalyst comprising an intermediate pore size molecular sieve, preferably a zeolite of the MTT or TON type. SSZ-32 and ZSM-22 are examples of such molecular sieves. This catalyst is modified with a metal or metals selected from the group consisting of Ca, Cr, Mg, La, Ba, Pr, Sr, K and Nd. The catalyst is additionally loaded with a Group VIII metal or metals for hydrogenation purposes. The catalyst is suitable for use in a process whereby a feed including straight chain and slightly branched paraffins having 10 or more carbon atoms is isomerized.
    Type: Grant
    Filed: December 13, 2004
    Date of Patent: June 24, 2008
    Assignee: Chevron U.S.A. Inc.
    Inventors: Joseph A. Biscardi, Darren P. Fong, Paul Marcantonio
  • Patent number: 7141529
    Abstract: The invention is directed to a method of making a catalyst comprising an intermediate pore size molecular sieve, preferably a zeolite of the MTT or TON type. SSZ-32 and ZSM-22 are examples of such molecular sieves. This catalyst is modified with a metal or metals selected from the group consisting of Ca, Cr, Mg, La, Ba, Pr, Sr, K and Nd. The catalyst is additionally loaded with a Group VII metal or metals for hydrogenation purposes. The catalyst is suitable for use in a process whereby a feed including straight chain and slightly branched paraffins having 10 or more carbon atoms is isomerized.
    Type: Grant
    Filed: March 21, 2003
    Date of Patent: November 28, 2006
    Assignee: Chevron U.S.A. Inc.
    Inventors: Joseph A. Biscardi, Darren P. Fong, Paul Marcantonio
  • Publication number: 20040186006
    Abstract: The invention is directed to a method of making a catalyst comprising an intermediate pore size molecular sieve, preferably a zeolite of the MTT or TON type. SSZ-32 and ZSM-22 are examples of such molecular sieves. This catalyst is modified with a metal or metals selected from the group consisting of Ca, Cr, Mg, La, Ba, Pr, Sr, K and Nd. The catalyst is additionally loaded with a Group VII metal or metals for hydrogenation purposes. The catalyst is suitable for use in a process whereby a feed including straight chain and slightly branched paraffins having 10 or more carbon atoms is isomerized.
    Type: Application
    Filed: March 21, 2003
    Publication date: September 23, 2004
    Applicant: Chevron U.S.A. Inc.
    Inventors: Joseph A. Biscardi, Darren P. Fong, Paul Marcantonio
  • Patent number: 6579441
    Abstract: A base oil feed having a tendency to form a haze at ambient or sub-ambient temperatures is contacted with a solid adsorbent to remove at least a portion of the haze precursors, thereby reducing the haze-forming tendency of the base oil feed.
    Type: Grant
    Filed: June 9, 2000
    Date of Patent: June 17, 2003
    Assignee: Chevron U.S.A. Inc.
    Inventors: Joseph A. Biscardi, Darren P. Fong